Physics, asked by balajinaikmude3371, 10 months ago

A metre scale is made up of steel and measures correct length at 16°C. What will be the percentage error if this scale is used (a) on a summer day when the temperature is 46°C and (b) on a winter day when the temperature is 6°C? Coefficient of linear expansion of steel = 11 × 10–6 °C–1.

Answers

Answered by bhuvna789456
1

The percentage error if the scale is used

a)on a summer day is  3.3 \times 10^{-2} \%

b)on a winter day  is 1.1 \times 10^{-5}

Explanation:

Given:

Initial temp,t_1=16 ^{\circ}C

Solution:

Let the correct length determined by a steel 16 ° C meter scale be L

A)Temperature on hot day of summer t_2=46 ^{\circ}C

So the temperature changes, \Delta \theta =t_2

-t_1=30^{\circ}C

Linear expansion ratio for steel

Given:

Let the correct length determined by a steel 16 ° C meter scale be L

Initial temp.  t1=16 oC

(a)Temperature on hot day of summer t_2 = 46 ^{\circ}C

So the temperature changes, ∆θ=t2

-t_1 = 30^{\circ}C

Linear expansion ratio for steel

\alpha=1.1 \times 10^{-5} ^{\circ} C

So change in length

\Delta L=L \alpha \Delta \theta=L \times 1.1 \times 10^{-5} \times 30

\% \text { of error }=\left(\frac{\Delta L}{L} \times 100\right) \%

= \left(\frac{\ln \Delta \theta}{L} \times 100\right) \%

=\left(1.1 \times 10^{-5} \times 30 \times 100\right) \%

=3.3 \times 10^{-2} \%

(b) Winter-day temperature,t_2 = 6 ^{\circ}C

So the temperature changes, \Delta \theta=t_2

- t_2=10^{\circ}C

\Delta L=L_{2}

-L=L \alpha \Delta \theta=L \times 1.1 \times 10^{-5} \times 30

\% \text { of error }=\left(\frac{\Delta L}{L} \times 100\right) \%

=\left(\frac{L \alpha \Delta \theta}{L} \times 100\right) \%

=\left(1.1 \times 10^{-5} \times 10 \times 100\right) \%

=1.1 \times 10^{-5}

Answered by Anonymous
0

\huge{\boxed{\mathcal\pink{\fcolorbox{red}{yellow}{Answer}}}}

Please refer the above attachment

Attachments:
Similar questions