Math, asked by guruansh89, 1 year ago

a minus b whole cube plus B minus C whole cube plus c minus a whole cube

Answers

Answered by Anonymous
393
( a - b )^3 + ( b - c )^3 + ( c - a )^3

if a + b + c = 0 , then ( a - b )^3 + ( b - c )^3 + ( c - a )^3

sum = a - b + b - c + c -a = 0

( a - b )^3 + ( b - c )^3 + ( c - a )^3 = 3 ( a-b ) (b - c )(c -a) Ans.
Answered by PravinRatta
16

Given,

equation given is

(a-b)^{3}+(b-c)^{3}+(c-a)^{3}               (1)

To Find,

the value of

(a-b)^{3}+(b-c)^{3}+(c-a)^{3}

Solution,

we will use the identity (a-b)^{3}= a^{3}-b^{3}-3a^{2}b+3ab^{2} to find the required value.

so,

(a-b)^{3}= a^{3}-b^{3}-3a^{2}b+3ab^{2}            (2)

(b-c)^{3}= b^{3}-c^{3}-3b^{2}c+3bc^{2}             (3)

(c-a)^{3}= c^{3}-a^{3}-3c^{2}a+3ca^{2}            (4)

now, using the value of equations (2),(3),(4) in equation (1)

the equation (1) becomes,

a^{3}-b^{3}-3a^{2}b+3ab^{2} +b^{3}-c^{3}-3b^{2}c+3bc^{2}+c^{3}-a^{3}-3c^{2}a+3ca^{2}

= -3a^{2}b+3ab^{2}-3b^{2}c+3bc^{2}-3c^{2}a+3ca^{2}

= 3a^{2}(c-b)+3b^{2}(a-c)+3c^{2}(b-a)

Hence the value of (a-b)^{3}+(b-c)^{3}+(c-a)^{3} is 3a^{2}(c-b)+3b^{2}(a-c)+3c^{2}(b-a) .

Similar questions