Math, asked by yousufkhanyousuf26, 4 months ago

A motorboat whose speed is 15 kilometre per hour in still water goes 30 kilometre downstream and come back in a total time is of 4 hour 30 minutes find the speed of stream​

Answers

Answered by EliteZeal
92

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Speed of motorboat in still water is 30 km/hr

 \:\:

  • Distance = 30 km

 \:\:

  • Total time taken = 4 hours 30 minutes

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Speed of stream

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the speed of stream be "x"

  • Let time taken in downstream be t1

  • Let time taken in upstream be t2

 \:\:

 \underline{\bold{\texttt{Speed in downstream :}}}

 \:\:

➜ 15 + x

 \:\:

 \underline{\bold{\texttt{Speed in upstream :}}}

 \:\:

➜ 15 - x

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

 \sf Time = \dfrac { Distance } { Speed }

 \:\:

 \underline{\bold{\texttt{Time taken while going downstream :}}}

 \:\:

 \sf t1 = \dfrac { 30} { 15 + x}

 \:\:

 \underline{\bold{\texttt{Time taken while going upstream :}}}

 \:\:

 \sf t2 = \dfrac { 30 } { 15 - x }

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

➜ t1 + t2 = 4 hours 30 minutes

 \:\:

⟮ 4 hours 30 minutes =  \sf 4 \dfrac { 1 } { 2 }

 \:\:

 \sf t1 + t2 = 4 \dfrac { 1 } { 2 }

 \:\:

 \sf \dfrac { 30} { 15 + x} + \dfrac { 30 } { 15 - x } =  4 \dfrac { 1 } { 2 }

 \:\:

 \sf \dfrac { 30(15 - x) + 30(15 + x) } { (15 + x)(15 - x) } =  4 \dfrac { 1 } { 2 }

 \:\:

 \sf \dfrac { 450 - 30x + 450 + 30x }  {15 ^2 - x ^2 } =  4 \dfrac { 1 } { 2 }

 \:\:

 \sf \dfrac { 450 + 450 }  {225 - x ^2 } =  4 \dfrac { 1 } { 2 }

 \:\:

 \sf \dfrac { 900}  {225 - x ^2 } =  \dfrac { 9} { 2 }

 \:\:

Multiplying LHS & RHS by 9

 \:\:

 \sf \dfrac { 100}  {225 - x ^2 } =  \dfrac { 1} { 2 }

 \:\:

By cross multiplication

 \:\:

 \sf 200 = 225 - x ^2

 \:\:

 \sf x ^2 = 225 - 200

 \:\:

 \sf x ^2 = 25

 \:\:

 \sf x = \sqrt {25}

 \:\:

 \sf x = - 5 \:\:\:\:\:\: |   \:\:\:\:\:\: x = 5

 \:\:

As speed can't be negative hence x = 5

 \:\:

  • Therefore speed of stream is 5 km/hr
Answered by Anonymous
5

Given :-

  • A motorboat whose speed is 15 kilometre per hour in still water goes 30 kilometre downstream and come back in a total time is of 4 hour 30 minutes.

To Find :-

  • The speed of the stream = ?

Answer :-

  • The speed of the stream = 5 km/hr

Explaination :-

▣ Let Speed of stream be x km/hr

▦ Speed of boat in downstream = (15 + x) km/hr

▩ Speed of boat in upstream = (15 - x) km/hr

According to Question :-

→ 30/(15 + x) + 30/(15 - x) = 4 ½

→ 30/(15 + x) + 30/(15 - x) = 9/2

→ 30(15 - x) + 30(15 + x)/(15 + x) (15 - x) = 9/2

→ 450 - 30x + 450 + 30x/225 - x² = 9/2

→ 900/225 - x² = 9/2

→ 100/225 - x² = 2

→ 225 - x² = 2 × 100

→ 225 - x² = 200

→ 225 - 200 = x²

→ 25 = x²

→ x = 5 km/hr

Therefore,The speed of the stream is 5 km/hr.

Similar questions