Physics, asked by sshahanaibrahim, 4 months ago

A motorcyclist observes a car coming from behind with a diminished 1/6. If the actual distance between the car and the bike is 30 m calculate the radius of curvature of the mirror.​

Answers

Answered by cjjgdjjug234677
1

Explanation:

a car coming from behind with a diminished 1/6. If the actual distance between the car and the bike is 30 m calculate the radius of curvature of

Answered by Anonymous
67

\mathfrak{\bf{\underline{\underline{Given :-  }}}}

⟹ u = -30 m

⟹ v = ?

 \implies \mathsf{m \:  =  +  \frac{1}{6} }

\mathfrak{\bf{\underline{\underline{Formulaes \ used :-  }}}}

  \star  \:  \: \mathsf{m =  \frac{ - v}{u} } \\

 \star \:  \: \mathsf {f =  \frac{uv}{u + v} } \\

 \star \:  \: \mathsf {R=2f } \\

\mathfrak{\bf{\underline{\underline{To \ Find :-  }}}}Radius Of Curvature of Mirror.

\mathfrak{\bf{\underline{\underline{Solution :-  }}}}

 \implies \mathsf{m =  \frac{ - v}{u} =   + \frac{  1}{6}  } \\

 \implies \mathsf{ \frac{ - v}{30} =  \frac{1}{6}  } \\

 \implies \:  \mathsf{v =  - 5m} \\\

\mathsf{\star \:   Note :    \: distance \: can \: never \: negative}

 \therefore \:  \mathsf{v =  5m} \\\

Now ,

 \implies \: \mathsf {f =  \frac{uv}{u + v} } \\

\implies \mathsf{ f =  \frac{ - 30 \times 5 }{ - 30 + 5} } \\

\implies \mathsf{ f =  \frac{ - 150 }{ - 25} } \\

\implies \mathsf{ f =  6m  } \\

\implies \mathsf{ R=2f } \\

\implies \mathsf{ f =  6m  } \\

\implies \mathsf{ R = 2 × 6 = 12m  } \\

ㅤㅤㅤ★\boxed{\mathsf{\red{ R =  12m  }}} \\

__________________________

Similar questions