Math, asked by Bupinderfamyial, 5 months ago

A narrow box is 6√2cm long and 4√2 cm wide Find its height if the length of the diagonal is 4√7cm​

Answers

Answered by SarcasticL0ve
6

\sf Given \begin{cases} & \sf{Length\:of\:box\:,l = \bf{6\sqrt{2}\:cm}}  \\ & \sf{Breadth\:of\:box\:,b = \bf{4\sqrt{2}\:cm}} \\ & \sf{Length\:of\: diagonal\:of\:box\:,d = \bf{4\sqrt{7}\:cm}} \end{cases}\\ \\

To find: Height of box?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

Formula to find diagonal of a cuboid is given by,

\star\;{\boxed{\sf{\pink{Diagonal_{\;(cuboid)} = \sqrt{(length)^2 + (breadth)^2 + (height)^2}}}}}\\ \\

:\implies\sf d = \sqrt{l^2 + b^2 + h^2}\\ \\

Here,

  • l = 6√2 cm
  • b = 4√2 cm
  • d = 4√7 cm

⠀⠀⠀

\dag\;{\underline{\frak{Now,\:Putting\:values\;in\;formula,}}}\\ \\

:\implies\sf 4\sqrt{7} = \sqrt{(6\sqrt{2})^2 + (4\sqrt{2})^2 + h^2}\\ \\ \\ :\implies\sf 4\sqrt{7} = \sqrt{72 + 32 + h^2}\\ \\

:\implies\sf (4\sqrt{7})^2 = \bigg(\sqrt{72 + 32 + h^2}\bigg)^2\qquad\bigg\lgroup\bf Squaring\:both\:sides\bigg\rgroup\\ \\

:\implies\sf (4\sqrt{7})^2 = 72 + 32 + h^2\\ \\ \\ :\implies\sf 112 = 104 + h^2\\ \\ \\ :\implies\sf h^2 = 112 - 104\\ \\ \\ :\implies\sf h^2 = 8\\ \\ \\ :\implies\sf \sqrt{h^2} = \sqrt{8}\\ \\ \\ :\implies\sf h = \sqrt{8}\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{h = 2 \sqrt{2}\:cm}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Height\:of\:narrow\:box\:is\: \bf{2\sqrt{2}\:cm}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:Formulas\:related\:to\;cuboid\:\bigstar}}}} \\  \\

  • \sf Area\:of\:base\:of\:cuboid = \bf{length \times breadth}

  • \sf Total\:surface\:area\:of\;cuboid = \bf{2(lb + bh + hl)}

  • \sf Curved\:surface\:area\:of\:cuboid = \bf{2(l + b) \times h}
Answered by mathdude500
5

Answer:

ǫᴜᴇsᴛɪᴏɴ

  • A narrow box is 6√2cm long and 4√2 cm wide. Find its height if the length of the diagonal is 4√7cm.

ANSWER

Given :-

  • Length of box = 6√2 cm
  • Breadth of box = 4√2 cm
  • Diagonal of box = 4√7 cm

To find :-

  • Height of the box

Formula used :-

Diagonal of a cuboid is given by

\small \bf d \:  =  \sqrt{ {l}^{2}  +  {b}^{2} +  {h}^{2}  }

where, symbol have the meanings

  • l = Length of Cuboid

  • b = Breadth of Cuboid

  • h = Height of Cuboid

  • d = Diagonal of Cuboid

Solution :-

★ According to statement

  • Length of box = 6√2 cm

  • Breadth of box = 4√2 cm

  • Diagonal of box = 4√7 cm

Let Height of the box be 'h' cm.

Using the formula, the diagonal (d) of box is

\small \bf d \:  =  \sqrt{ {l}^{2}  +  {b}^{2} +  {h}^{2}  }

Substitute the values of d, l and b.

\small \bf 4 \sqrt{7}  \:  =  \sqrt{ {(6 \sqrt{2}) }^{2}  +  {(4 \sqrt{2}) }^{2} +  {h}^{2}  }

\bf \implies \:4 \sqrt{7}  =  \sqrt{72 \ + 32 +  {h}^{2} }

\small \bf squaring \: both \: sides

\bf \implies \: 112 = 104 +  {h}^{2}

\bf \implies \: {h}^{2}  = 112 - 104

\bf \implies \: {h}^{2}  = 8

\bf \implies \:h =  \sqrt{8}  = 2 \sqrt{2} \:  cm

\bf \implies \:height \: of \: box \:  = 2 \sqrt{2}  \: cm

_____________________________________________

⠀⠀⠀

Similar questions