Math, asked by paramjeet3, 1 year ago

a number consist of two digit number whose sum is 9 if 27 is added to the number the digit are reversal.find the number

Answers

Answered by RehanAhmadXLX
7

Heya \:  !!!<br /> \\  \\ This \:  is  \: your \:  answer. \\  \\ <br /><br />It  \: is  \: given \:  that  \: the  \: sum  \\ \:  of  \: the  \: two \:  digits \:  is  \: 9.  \\ <br />Let  \: the  \: digit \:  at  \: tens \:  place  \: be \:  b \:   \\ and \:  ones \:  place  \: be  \: a. \:  \\  \\ <br /><br />So....<br />a + b = 9.        .......(i).
If\: 27 \:  is  \: added  \: to  \: the \:  original  \: number, \\  the \:  digits  \: get  \: reversed. \\ <br />eg.  \: if \:  the  \: original  \: number  \: is  \: AB, \\  then  \: after  \: adding  \: 27 \:  it \:  becomes \:  BA.  \\  \\ <br /><br />We  \: know \:  that \:  every \:  number  \: is  \: of \:  \\  the \:  form ....... \\ <br />..... + ..... + 1000d + 100c + 10b + a.


As \:  it  \: is  \: a  \: two  \: digit \:  number, \:  then \:  \\  it's  \: general \:  form  \: will  \: be.  \:  \\ <br />10b + a
So..... \\ <br />According  \: to  \: question,  \\ <br />10b+a +27 = 10a+ b \\ 10b - b + a - 10a =  - 27 \\ 9b - 9a =  - 27 \\ b - a =  - 3 \\ a - b = 3..........(ii)

Now,  \: adding  \: equation \:  (i) \:  and \:  (ii), \\  we  \: get... \\  \:  \:  \: a  \:  \:  +  \:  \: b \:   =  \: 9 \\  \:  \:  \: a  \:  \:  -  \:  \: b \:  =  \: 3 \\ ........................ \\  \:  \: 2a \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: =  \: 12

Hence,  \: a = 6.  \\ Putting,  \\ a = 6  \: in  \: equation  \: (i), \\ <br />a + b = 9 \\ <br />6 + b = 9  \\  <br />b = 3.<br />
Now,  \: a = 6  \: and \:  b = 3. \\  \\ <br /><br />Putting  \: this \:  in  \: the \:  general \\  form \:  of  \: original \:  number,  \\
10b + a \\  = 10 \times 3 + 6 \\  = 36.


Hence,  \: the  \: original \:  digit \:  is  \: 36.
Hope  \: it  \: helps. \\ <br />Regards.........




Answered by Akanksha0623
0

Answer:

36

Hope it helps you

Mark it as Brainliest

Similar questions