A number consists of 2 digits whose sum is 9. if 27 is subtracted from the original number, the digits are interchanged. Then the original number is?
Answers
Answered by
28
Hey there !!
→Let the ten's digit be x.
and, the unit's digit be y.
A/Q,
x + y = 9...........(1).
⇒ Original number = 10x + y.
⇒ Number obtained on interchanging = 10y + x.
→ Now, A/Q,
⇒ 10x + y - 27 = 10y + x.
⇒ 10x - x + y - 10y = 27.
⇒ 9x - 9y = 27.
⇒ 9( x - y ) = 27.
⇒ x - y = 3...........(2).
Now, substracte in eqyation (1) and (2), we get
x + y = 9
x - y = 3.
- + -
________
⇒ 2y = 6.
⇒ y = 3.
Put the value of y in equation (1), we get
⇒ x + y = 9.
⇒ x + 3 = 9.
⇒ x = 9 - 3.
⇒ x = 6.
Hence, the original number = 10x + y.
= 10 × 6 + 3.
= 63.
THANKS
#BeBrainly.
Anonymous:
great
Answered by
23
Heya!
Let the no be xy(form 10x + y)
A/Q ;
x+y = 9 eq1.
10x + y - 27 = 10y + x
=) 10x - x + y - 10y = 27
=) 9x - 9y = 27
=) x - y = 3 eq2.
Add both eqs;
=) 2x = 12
=) x = 12/2 = 6
Put the value of y in eq2..
=) y = 9-6 = 3
Hence no is 63.
Hope it helps uh!!
Let the no be xy(form 10x + y)
A/Q ;
x+y = 9 eq1.
10x + y - 27 = 10y + x
=) 10x - x + y - 10y = 27
=) 9x - 9y = 27
=) x - y = 3 eq2.
Add both eqs;
=) 2x = 12
=) x = 12/2 = 6
Put the value of y in eq2..
=) y = 9-6 = 3
Hence no is 63.
Hope it helps uh!!
Similar questions