Math, asked by sm8859079, 10 months ago

A number of two digits exceeds four times the sum of its digits by 6 and it is increased by 9 on reversing the digits. find the number​

Answers

Answered by Anonymous
31

\huge\red{\mathbb{Answer}}

See in attachment

Attachments:
Answered by mddilshad11ab
125

\sf\large\underline{Let:}

  • \rm{The\: ones\: digit=x}
  • \rm{The\: tens\: digit=y}
  • \rm{The\: Number=10y+x}

\sf\large\underline{To\: Find:}

  • \rm{The\:Number=?}

\sf\large\underline{Solution:}

\sf\underline{Given\:in\:1st\:case:}

  • A number of two digits exceeds four times the sum of its digits by 6]

\rm{\implies 10y+x=4(x+y)+6}

\rm{\implies 10y+x=4x+4y+6}

\rm{\implies 4x-x+4y-10y=-6}

\rm{\implies 3x-6y=-6}

  • Dividing by 3 on both sides]

\rm{\implies x-2y=-2-------(1)}

\sf\underline{Given\:in\:2nd\:case:}

  • When it is increased by 9 then the digit is reversed]

\rm{\implies 10y+x+9=10x+y}

\rm{\implies 10x-x+y-10y=9}

\rm{\implies 9x-9y=9}

  • Dividing by 9 on both sides]

\rm{\implies x-y=1-----(2)}

  • Now, solving equation I and 2]

\rm{\implies x-2y=-2}

\rm{\implies x-y=1}

  • By solving we get here]

\rm{\implies -y=-3}

\rm{\implies y=3}

  • Putting the value of y=3 in eq 1]

\rm{\implies x-2y=-2}

\rm{\implies x-2\times\:3=-2}

\rm{\implies x-6=-2}

\rm{\implies x=-2+6}

\rm{\implies x=4}

\sf\large{Hence,}

\rm{\implies The\:Number=10y+x}

\rm{\implies The\: Number=10\times\:3+4}

\rm{\implies The\: Number=30+4}

\rm\purple{\implies The\: Number=34}

Similar questions