Math, asked by jhaprabha907, 18 hours ago

a of tan theta = 2-√3, then prove
that cot theta =2+√3.​

Answers

Answered by RISH4BH
111

Need to FinD :-

  • The value of cot theta .

\red{\frak{Given}}\Bigg\{\sf tan\theta = 2-\sqrt3

Given that the value of tanθ = 2 - 3 . We need to find out the value of cotθ . We know that ,

\sf\longrightarrow tan\theta =\dfrac{1}{cot\theta}

Therefore ,

\sf\longrightarrow cot\theta =\dfrac{1}{tan\theta}

Put on the Value of tanθ ,

\sf\longrightarrow cot\theta =\dfrac{1}{tan\theta} \\\\\\\sf\longrightarrow cot\theta =\dfrac{1}{2-\sqrt3}

Rationalise the denominator ,

\sf\longrightarrow cot\theta  =\dfrac{1(2+\sqrt3)}{(2-\sqrt3)(2+\sqrt3)}\\\\\\\sf\longrightarrow cot\theta = \dfrac{2+\sqrt{3}}{(2)^2-(\sqrt3)^2}\\\\\\\sf\longrightarrow cot\theta =  \dfrac{2+\sqrt{3}}{4-3}  \\\\\\\sf\longrightarrow \underline{\underline{\red{cot\theta =  2+\sqrt3}}}

Similar questions