CBSE BOARD XII, asked by jer2id2iniSKneelambe, 1 year ago

A parallel beam of light of 500 nm falls on a narrow slit and the resulting diffraction pattern is observed on a screen 1 m away. It is observed that the first minimum is at a distance of 2.5 mm from the centre of the screen. Calculate the width of the slit. (2)

Answers

Answered by rishilaugh
5
The distance of the nth minimum from the center of the screen is,Where, D = distance of slit from screen, λ = wavelength of the light, a = width of the slitFor first minimum, n=1Thus,
Attachments:
Answered by Anonymous
41

Explanation:

\Large{\red{\underline{\underline{\sf{\purple{Solution:}}}}}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\hookrightarrow Wavelength of the light beam, \sf \lambda\:=\:500\,nm\:=\:500\times 10^{-9}m

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\hookrightarrow Distance of the screen from the slit, \sf D\:=\:1m

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\hookrightarrow For first minima, \sf n\:=\:1

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\hookrightarrow Distance between the slits = \sf{d}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

Distance of the first minimum from the centre of the screen can br obtained as,

\sf x\:=\:2.5\,mm\:=\:2.5\times 10^{-3}m

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

it is related to order of minima as,

\sf \longrightarrow\:n\lambda\:=\:x \dfrac{d}{D}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf d\:=\: \dfrac{n\times \lambda\times D}{x}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf d\:=\: \dfrac{1\times 500\times 10^{-9}\times 1}{2.5\times 10^{-3}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf d\:=\:2\times 10^{-4}m\:=\:0.2\,mm

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\hookrightarrow Therefore, the width of the slits is \sf{\green{0.2\,mm}}

Similar questions