Math, asked by tanyaraj1142009, 1 month ago

a park is (25)4/5m long and (20) 2/3m wide. find it's perimeter.if a walkway is to be constructed inside the park which is (2) 3/8m wide, what would be the inside perimeter of walkway​

Answers

Answered by 5ayuvrajharshvardhan
1

Answer:

And please mark as brain list

Step-by-step explanation:

a park is 25 4/5 m long and 20 2/3 m wide . a walkway is to be constructed inside the park which is 2 3/8m wide,

To find : perimeter of park  

inside perimeter of the walkway

Solution:

Park length  25 4/5 m  = 25 + 4/5  m =  (125 + 4)/5 = 129/5 m

Park Width =  20 2/3 m = 20 + 2/3 m = (60 + 2)/3  = 62/3  m

Park perimeter = 2 ( Length + Width )

= 2 ( 129/5  + 62/3)

= 2( 387  + 310)/15

= 2(697)/15

= 1394 / 15

= 92  14/15  m

walkway is to be constructed inside the park which is 2 3/8m wide

2  + 3/8  m   = 19/8  Meter

8 times the width will be reduced  

8 * 19/8   = 19 m

inside perimeter of the walkway  = 92  14/15  - 19

= 75 14/15 m

Park perimeter =  92  14/15  m

inside perimeter of the walkway  = 75 14/15 m

Learn More:

What is the area of the jogging track which is 2 m wide that runs ...

brainly.in/question/11147790

perimeters of two similar triangles are 30cm and 40cm respectively ...

brainly.in/question/18128501

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Let assume that the rectangular park as ABCD and when the path is constructed inside the rectangular park, let the inner rectangular region be PQRS.

Dimensions of ABCD

\rm :\longmapsto\:Length = 25 \dfrac{4}{5}  =  \dfrac{129}{5}  \: m

\rm :\longmapsto\:Breadth = 20 \dfrac{2}{3}  =  \dfrac{62}{3}  \: m

We know,

Perimeter of Rectangular Park ABCD is

\bf :\longmapsto\:Perimeter_{ABCD} \:  = 2(Length + Breadth)

\rm \:  \:  =  \:  \: 2\bigg(\dfrac{129}{5}  + \dfrac{62}{3} \bigg)

\rm \:  \:  =  \:  \: 2\bigg(\dfrac{129 \times 3 + 62 \times 5}{15}  \bigg)

\rm \:  \:  =  \:  \: 2\bigg(\dfrac{387 + 310}{15}  \bigg)

\rm \:  \:  =  \:  \: 2\bigg(\dfrac{697}{15}  \bigg)

\rm \:  \:  =  \:  \: \dfrac{1394}{15}

\rm \:  \:  =  \:  \: 92 \dfrac{14}{15}  \: m

Dimensions of PQRS

\bf :\longmapsto\:Width \: of \: path = 2 \dfrac{3}{8}  =  \dfrac{19}{8}  \: m

\rm :\longmapsto\:Length = \dfrac{129}{5}  - \dfrac{19}{8}  - \dfrac{19}{8}

\rm \:  \:  =  \:  \: \dfrac{129 \times 8 - 19 \times 5 - 19 \times 5}{40}

\rm \:  \:  =  \:  \: \dfrac{1032 - 95 - 95}{40}

\rm \:  \:  =  \:  \: \dfrac{842}{40}

\rm \:  \:  =  \:  \: \dfrac{421}{20}  \: m

\rm :\longmapsto\:Breadth = \dfrac{62}{3}  - \dfrac{19}{8}  - \dfrac{19}{8}

\rm \:  \:  =  \:  \: \dfrac{62 \times 8 - 19 \times 3 - 19 \times 3}{24}

\rm \:  \:  =  \:  \: \dfrac{496 - 57 - 57}{24}

\rm \:  \:  =  \:  \: \dfrac{382}{24}

\rm \:  \:  =  \:  \: \dfrac{191}{12}  \: m

Now,

Perimeter of rectangular park PQRS is

\bf :\longmapsto\:Perimeter_{PQRS} \:  = 2(Length + Breadth)

\rm \:  \:  =  \:  \: 2\bigg(\dfrac{421}{20}  + \dfrac{191}{12} \bigg)

\rm \:  \:  =  \:  \: 2\bigg(\dfrac{421 \times 3 + 191 \times 5}{60}  \bigg)

\rm \:  \:  =  \:  \: 2\bigg(\dfrac{1263 + 955}{60}  \bigg)

\rm \:  \:  =  \:  \: 2\bigg(\dfrac{2218}{60}  \bigg)

\rm \:  \:  =  \:  \: \bigg(\dfrac{1109}{15}  \bigg)

\rm \:  \:  =  \:  \: 73 \:  \dfrac{14}{15}  \: m

Additional Information :-

\rm :\longmapsto\:Area_{(rectangle)} = Length \times Breadth

\rm :\longmapsto\:Area_{(square)} =  {side}^{2}

\rm :\longmapsto\:Perimeter_{(square)} = 4 \times side

\rm :\longmapsto\:Perimeter_{(rhombus)} = 4 \times side

\rm :\longmapsto\:Area_{(rhombus)} = base \times height

\rm :\longmapsto\:Area_{(circle)} = \pi \:  {r}^{2}

Attachments:
Similar questions