Physics, asked by sowmyakrupakar5, 9 months ago

A particle initially at rest moves along x-axis from origin. Its acceleration varies with time as a=(6t+5)m/s. The distance covered in first 2 sec is (in multiples of 6m)

Answers

Answered by Rohit18Bhadauria
10

Given:

Acceleration of particle,a=(6t+5)m/s

To Find:

The distance covered in first 2 sec

Solution:

It is given that,

\longrightarrow\rm{a=6t+5}

On integrating both the sides, we get

\longrightarrow\rm{\displaystyle\int adt=\displaystyle\int(6t+5)dt}

\longrightarrow\rm{v=\dfrac{6t^{2}}{2} +5t}

\longrightarrow\rm{v=3t^{2}+5t}

where, v is velocity

Now, on integrating both the sides again, we get

\longrightarrow\rm{\displaystyle\int vdt=\displaystyle\int(3t^{2}+5t)dt}

\longrightarrow\rm{x=\dfrac{3t^{3}}{3}+\dfrac{5t^{2}}{2}}

\longrightarrow\rm{x=t^{3}+\dfrac{5t^{2}}{2}}

where, x is the displacement of particle

On putting t=2 ,we get

\longrightarrow\rm{x=(2)^{3}+\dfrac{5(2)^{2}}{2}}

\longrightarrow\rm{x=8+\dfrac{5(4)}{2}}

\longrightarrow\rm{x=8+\dfrac{20}{2}}

\longrightarrow\rm{x=8+10}

\longrightarrow\rm\green{x=18\ m}

Answered by Anonymous
181

Answer

Equation of acceleration w.r.t time \longrightarrow

a = 6t + 5 sec.

Formula used -

\int \: adt = Velocity

\int \: vdt = Distance

Solution -

\int adt = \int 6t + 5

Integrating by using \int {x}^{n} dx =   \frac{ {x}^{n + 1} }{n + 1}

v = 3 {t}^{2}  + 5t

Integrating both side -

\int vdt = \int  3 {t}^{2}  + 5t

x = {t}^{3}  +  {\frac{5t}{2} }^{2}

At t = 2 sec

x =  {2}^{3}  +  \frac{ {5 \times 2}^{2} }{2}

x = 8 + 10

x = 18 m

Thanks

Similar questions