A particle is in an angular state đťś“(đťś,đťś™) = âš 3 4đťś‹ sinđťś™ sin đťś. (a) what values of l = |l| and đťżđť‘§ can be measured and with what probabilities? (b) find and .
Answers
Answered by
0
hey there is answer !!
Dear Student,
14) yx2+1‾‾‾‾‾‾√=log(x2+1‾‾‾‾‾‾√−x)Differentiating both sides w.r.t. x, we getx2+1‾‾‾‾‾‾√dydx+y2x2x2+1√=1x2+1√−x×(2x2x2+1√−1)⇒x2+1‾‾‾‾‾‾√dydx+xyx2+1√=1x2+1√−x×(x−x2+1√x2+1√)⇒x2+1‾‾‾‾‾‾√dydx+xyx2+1√=−1x2+1√⇒x2+1‾‾‾‾‾‾√dydx+xyx2+1√+1x2+1√=0⇒(x2+1)dydx+xy+1x2+1√=0⇒(x2+1)dydx+xy+1=0Hence proved.
Hope this information will clear your doubts about topic.
Kindly post different questions in different forum.
Regards
Dear Student,
14) yx2+1‾‾‾‾‾‾√=log(x2+1‾‾‾‾‾‾√−x)Differentiating both sides w.r.t. x, we getx2+1‾‾‾‾‾‾√dydx+y2x2x2+1√=1x2+1√−x×(2x2x2+1√−1)⇒x2+1‾‾‾‾‾‾√dydx+xyx2+1√=1x2+1√−x×(x−x2+1√x2+1√)⇒x2+1‾‾‾‾‾‾√dydx+xyx2+1√=−1x2+1√⇒x2+1‾‾‾‾‾‾√dydx+xyx2+1√+1x2+1√=0⇒(x2+1)dydx+xy+1x2+1√=0⇒(x2+1)dydx+xy+1=0Hence proved.
Hope this information will clear your doubts about topic.
Kindly post different questions in different forum.
Regards
Similar questions