Physics, asked by CaptainBrainly, 8 months ago

A particle is moving in a straight line under acceleration a = kt, where k is a constant. Find the velocity in terms of t. The motion starts from rest.​

Answers

Answered by Anonymous
80

SoluTion:

Given acceleration:

  • \tt{a(t) = kt}

We know that,

\large{\boxed{\tt{\blue{a(t) = \dfrac{d}{dt} [v(t)]}}}}

Using given expression,

\longrightarrow \tt{\dfrac{d}{dt} [v(t)] = kt}

\longrightarrow \tt{d[v(t)] = kt.dt}

Integrating it,

\longrightarrow \tt{v(t)} = \displaystyle\int kt.dt

\longrightarrow \tt{v(t)} = k \displaystyle\int t.dt

\longrightarrow \tt{v(t)} = \tt{k. \dfrac{t^{2}}{2} + c}

\longrightarrow \tt{v(t)} = \tt{\dfrac{1}{2} kt^{2} + c}

Also, it is given that motion starts from rest, so \bold{\tt{v = 0}} at \bold{\tt{t = 0}}.

\longrightarrow \tt{v(0)=0}

\longrightarrow \tt{\dfrac{1}{2}k(0)^{2}\:+c=0}

\longrightarrow \tt{c = 0}

Hence,

\large{\boxed{\boxed{\pink{\sf{v(t)=\dfrac{1}{2} kt^{2}\:m/s}}}}}


Anonymous: Perfect :P
Anonymous: Thank you bacchi! :P
Anonymous: Nice ❤️
Anonymous: Thankies! ♡
EliteSoul: Amazing :D
Anonymous: Thank You! :D
amitkumar44481: Great :,-)
Anonymous: Thank You! :)
Answered by Anonymous
80

GiveN :

  • Acceleration is given as a = kt
  • Where k is constant
  • Initial velocity (u) = 0 m/s

To FinD :

  • Velocity in terms of t

SolutioN :

Take the given equation :

\implies \rm{a \: = \: kt \: \: \: \: \: \: \: \: ...(1)}

As we know that,

\implies \rm{a = \dfrac{dv}{dt} \: \: \: \: \: \: \: \: \: ...(2)}

ㅤㅤㅤㅤㅤㅤㅤ

Put value of a from (1) in (2)

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{kt = \dfrac{dv}{dt}}

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{dv = kt.dt}

ㅤㅤㅤㅤㅤㅤㅤ

Integrate both the sides.

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{\int dv = \int (kt).dt}

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{v = k \int dt^2}

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{v = k \dfrac{1}{2} t^2 \: + \: c}

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{v \:  = \: \bigg(\dfrac{1}{2} \: kt^2 \: + c \: \bigg) \: ms^{-1}}

______________

If Integration constant = 0. Then,

\implies \rm{v \: = \: \dfrac{1}{2} kt^2 \: ms^{-1}}


Anonymous: Awesome :D
EliteSoul: Nice ❤
Similar questions