Physics, asked by neelusalvi1999, 11 months ago

A particle is moving on hexagon of side 'a' with speed v. what will be it's avg speed and avg velocity for A to C journey​

Answers

Answered by shadowsabers03
1

Let the time taken to travel from A to C be \displaystyle\sf {t.} Assume the hexagon is of regular.

The distance between A and C will be \displaystyle\sf {2a.} Then, average speed,

\displaystyle\longrightarrow\sf{\underline {\underline {v'=\dfrac {2a}{t}}}}

There will be a triangle ABC where \displaystyle\sf {AB=BC=a} and \displaystyle\sf {\angle ABC=120^{\circ}.}

The displacement between A and C will be, by cosine rule,

\displaystyle\longrightarrow\sf{AC=\sqrt{AB^2+BC^2-2\cdot AB\cdot BC\ \cos120^{\circ}}}

\displaystyle\longrightarrow\sf{AC=\sqrt{a^2+a^2-2a^2\cos120^{\circ}}}

\displaystyle\longrightarrow\sf{AC=\sqrt{2a^2(1-\cos120^{\circ})}}

\displaystyle\longrightarrow\sf{AC=\sqrt{2a^2\cdot2\sin^260^{\circ}}}

\displaystyle\longrightarrow \sf{AC=2a\sin 60^{\circ}}

\displaystyle\longrightarrow\sf{AC=2a\cdot\dfrac {\sqrt3}{2}}

\displaystyle\longrightarrow\sf{AC=a\sqrt3}

Hence the magnitude of the average velocity is,

\displaystyle\longrightarrow\sf{|\vec v|=\dfrac {a\sqrt3}{t}}

It's direction is along \displaystyle\sf {\vec {AC}.}

Let the direction of \displaystyle\sf {\vec {AC}} be \displaystyle\sf {\alpha.} Then,

\displaystyle\longrightarrow\sf{\alpha=\tan^{-1}\left (\dfrac {a\sin 60^{\circ}}{a+a\cos 60^{\circ}}\right)}

\displaystyle\longrightarrow\sf{\alpha=\tan^{-1}\left (\dfrac {\frac {a\sqrt3}{2}}{a+\frac {a}{2}}\right)}

\displaystyle\longrightarrow\sf{\alpha=\tan^{-1}\left (\dfrac {\frac {a\sqrt3}{2}}{\frac {3a}{2}}\right)}

\displaystyle\longrightarrow\sf{\alpha=\tan^{-1}\left (\dfrac {1}{\sqrt3}\right)}

since \displaystyle\sf {\alpha} is an acute angle,

\displaystyle\longrightarrow\sf{\alpha=30^{\circ}}

Let \displaystyle\sf {\vec {AB}=a\ \hat i} and \displaystyle\sf {\vec {BC}=a\cos 60^{\circ}\ \hat i+a\sin 60^{\circ}\ \hat j.}

Then the average velocity is,

\displaystyle\longrightarrow\sf{\underline {\underline {\vec v=\dfrac {a\cos 30^{\circ}\sqrt3}{t}\ \hat i+\dfrac {a\sin 30^{\circ}\sqrt3}{t}\ \hat j}}}

Similar questions