Physics, asked by narayanpauliit20, 1 month ago

A particle is moving with speed v = √x along positive
X-axis. Calculate the speed of the particle at time t = τ
(assume that the particle is at origin at t = 0)

Answers

Answered by shadowsabers03
5

Given,

\sf{\longrightarrow v=\sqrt x}

At \sf{x=0,\ v=0.}

Squaring both sides,

\sf{\longrightarrow x=v^2}

Differentiating wrt time \sf{t,}

\sf{\longrightarrow\dfrac{dx}{dt}=\dfrac{d}{dt}\left(v^2\right)}

\sf{\longrightarrow\dfrac{dx}{dt}=2v\cdot\dfrac{dv}{dt}}

But,

  • \sf{\dfrac{dx}{dt}=v}
  • \sf{\dfrac{dv}{dt}=a}

Then,

\sf{\longrightarrow v=2va}

\sf{\longrightarrow a=\dfrac{1}{2}}

\sf{\longrightarrow \dfrac{dv}{dt}=\dfrac{1}{2}}

\sf{\longrightarrow dv=\dfrac{1}{2}\ dt}

Integrating,

  • the velocity from 0 to v(τ) where v(τ) is the speed of the particle at time t = τ.
  • the time from 0 to τ in order to find the speed at time t = τ.

\displaystyle\sf{\longrightarrow\int\limits_0^{v(\tau)}dv=\int\limits_0^{\tau}\dfrac{1}{2}\ dt}

\displaystyle\sf{\longrightarrow v(\tau)-0=\dfrac{1}{2}(\tau-0)}

\displaystyle\sf{\longrightarrow\underline{\underline{v(\tau)=\dfrac{\tau}{2}}}}

Similar questions