*. A particle is projected from the ground with
some initial velocity making an angle of 45°
with the horizontal. It reaches a height of
7.5 m above the ground while it travels a
horizontal distance of 10 m from the point of
projection. Find the initial speed of projection.
Answers
Answered by
4
Answer:
Here in this case,
\theta =45^o, g=10 m/s^2θ=45
o
,g=10m/s
2
, Horizontal distance (x)=10m(x)=10m,
Vertical distance (y)=7.5m(y)=7.5m
y=(\tan\theta)xy=(tanθ)x -\left(\dfrac{g}{2u^2\cos^2\theta}\right)x^2−(
2u
2
cos
2
θ
g
)x
2
\Rightarrow 7.5=(1\times 10)-\left(\dfrac{10}{2u^2\times \dfrac{1}{2}}\right)\times 100⇒7.5=(1×10)−
⎝
⎜
⎜
⎛
2u
2
×
2
1
10
⎠
⎟
⎟
⎞
×100
\Rightarrow \dfrac{1000}{u^2}=2.5⇒
u
2
1000
=2.5
\Rightarrow u^2=\dfrac{1000}{2.5}=400⇒u
2
=
2.5
1000
=400
\Rightarrow u=\sqrt{400}=20⇒u=
400
=20 m/s
Similar questions