Physics, asked by wipronreddy, 7 months ago

A particle is projected with a velocity 30 ms-lat an angle of 60°with the horizontal. The vertical component of velocity at its
maximum height is
(A) 15 ms
(B) 15 3 ms-1
(C) 20 ms-1
(D) Zero​

Answers

Answered by dna63
2

Explanation:

We have,,

Initial speed of particle, u = 30 m/s

Angle of projection, = 60°

Acc due to gravity, a = -g = -9.8 m/s

At the maximum height,

(Consider the motion in y-direction,,)

We have,

\sf{u_{y}=u\sin(\Theta)}

\implies{\sf{u_{y}=30\times{\sin(60°)}}}

\implies{\sf{u_{y}=30\times{\frac{\sqrt{3}}{2}}}}

\implies{\boxed{\sf{u_{y}=+15\sqrt{3} \:ms^{-1}}}}

Max height attained,

\sf{H=\frac{u^{2}\sin^{2}(\Theta)}{2g}}

\implies{\sf{H=\frac{(30)^{2}\sin^{2}(60°)}{2\times{9.8}}}}

\implies{\sf{H=\frac{900\times{(\frac{\sqrt{3}}{2})^{2}}}{19.6}}}

\implies{\sf{H=\frac{900\times{\frac{3}{4}}}{19.6}}}

\implies{\sf{H=\boxed{\sf{\frac{675}{19.6}\:m}}}}

Therefore,

Vertical velocity of particle at maximum height is given by,

\boxed{\sf{v_{y}^{2}-u_{y}^{2}=2aH}}

\implies{\sf{v_{y}^{2}-(15\sqrt{3})^{2}=2\times{(-9.8)}\times(\frac{675}{19.6})}}

\implies{\sf{v_{y}^{2}-675=2\times(\frac{-675}{2})}}

\implies{\sf{v_{y}^{2}=-675+675}}

\implies{\sf{v_{y}=\sqrt{0}}}

\implies{\underline{\boxed{\sf{v_{y}=0\:ms^{-1}}}}}

Therefore option (D) is correct...✓✓✓

______________________________________________

HOPE IT HELPS ❣️❣️❣️

Answered by avanimudabagil12
0

Answer:

The answer is a option A

Mark me Brainliest

Similar questions