Physics, asked by lochan20143, 1 year ago

A particle is released from rest from a tower of
height 3h. The ratio of the intervals of time to cover
three equal heights h is

Answers

Answered by JasperJolly
2

Answer: Use Gallelio Law of Odd Numbers...

Explanation:

It says in equal time intervals, the distance covered is in ratio of 1:3:5:7:9:11.... If you want a proof let me know, I will send you short tricks and time saving formulae and tips..

Just mark as brainliest

Answered by Rohit18Bhadauria
14

Given:

Initial velocity of particle, u=0

Height of tower, H= 3h

To Find:

Ratio of the intervals of time to cover  three equal heights h

Diagram:

(See attachment)

Solution:

We know that,

  • According to second equation of motion for constant acceleration,

\orange{\boxed{\bf{s=ut+\dfrac{1}{2}at^{2}}}}

where,

u is initial velocity

a is acceleration

s is displacement

t is time taken

\rule{190}{1}

Reference taken here:

All velocities, forces and accelerations acting in upward direction are taken positive.

All velocities, forces and accelerations acting in downward direction are taken negative.

\rule{190}{1}

Let the time taken by particle to reach A from O be t₁, time taken by particle to reach B from O be t₂ and time taken by particle to reach C from O be t₃

We have to consider 3 cases:

Case-1 Motion of particle from O to A

On applying second equation of motion on particle, we get

\longrightarrow\rm{s=ut+\dfrac{1}{2}at^{2}}

\longrightarrow\rm{-h=(0)t_{1}+\dfrac{1}{2}(-g)(t_{1})^{2}}

\longrightarrow\rm{-h=-\dfrac{g(t_{1})^{2}}{2}}

\longrightarrow\rm{h=\dfrac{g(t_{1})^{2}}{2}}

\longrightarrow\rm{\dfrac{g(t_{1})^{2}}{2}=h}

\longrightarrow\rm{g(t_{1})^{2}=2h}

\longrightarrow\rm{(t_{1})^{2}=\dfrac{2h}{g}}

\longrightarrow\rm\pink{t_{1}=\sqrt{\dfrac{2h}{g}}}

Case-2 Motion of particle from O to B

On applying second equation of motion on particle, we get

\longrightarrow\rm{s=ut+\dfrac{1}{2}at^{2}}

\longrightarrow\rm{-2h=(0)t_{2}+\dfrac{1}{2}(-g)(t_{2})^{2}}

\longrightarrow\rm{-2h=-\dfrac{g(t_{2})^{2}}{2}}

\longrightarrow\rm{2h=\dfrac{g(t_{2})^{2}}{2}}

\longrightarrow\rm{\dfrac{g(t_{2})^{2}}{2}=2h}

\longrightarrow\rm{g(t_{2})^{2}=4h}

\longrightarrow\rm{(t_{2})^{2}=\dfrac{4h}{g}}

\longrightarrow\rm{t_{2}=\sqrt{\dfrac{4h}{g}}}

Case-3 Motion of particle from O to C

On applying second equation of motion on particle, we get

\longrightarrow\rm{s=ut+\dfrac{1}{2}at^{2}}

\longrightarrow\rm{-3h=(0)t_{3}+\dfrac{1}{2}(-g)(t_{3})^{2}}

\longrightarrow\rm{-3h=-\dfrac{g(t_{3})^{2}}{2}}

\longrightarrow\rm{3h=\dfrac{g(t_{3})^{2}}{2}}

\longrightarrow\rm{\dfrac{g(t_{3})^{2}}{2}=3h}

\longrightarrow\rm{g(t_{3})^{2}=6h}

\longrightarrow\rm{(t_{3})^{2}=\dfrac{6h}{g}}

\longrightarrow\rm{t_{3}=\sqrt{\dfrac{6h}{g}}}

\rule{190}{1}

Now, let the time taken by particle to reach B from A be t and the time taken by particle to reach C from B be T

So,

\longrightarrow\rm{t=t_{2}-t_{1}}

\longrightarrow\rm{t=\sqrt{\dfrac{4h}{g}}-\sqrt{\dfrac{2h}{g}}}

\longrightarrow\rm\pink{t=\sqrt{\dfrac{2h}{g}}(\sqrt{2}-1)}

Also,

\longrightarrow\rm{T=t_{3}-t_{2}}

\longrightarrow\rm{T=\sqrt{\dfrac{6h}{g}}-\sqrt{\dfrac{4h}{g}}}

\longrightarrow\rm\pink{T=\sqrt{\dfrac{2h}{g}}(\sqrt{3}-\sqrt{2})}

\rule{190}{1}

Now, our required ratio is

\longrightarrow\rm{t_{1}:t:T}

\longrightarrow\rm{\sqrt{\dfrac{2h}{g}}:\sqrt{\dfrac{2h}{g}}(\sqrt{2}-1):\sqrt{\dfrac{2h}{g}}(\sqrt{3}-\sqrt{2})}

\longrightarrow\rm\green{1:\sqrt{2}-1:\sqrt{3}-\sqrt{2}}

Attachments:
Similar questions