Physics, asked by Anonymous, 2 months ago

A particle moves a distance x in time t according to
equation x = (t + 5)-¹. The acceleration of particle is
proportional to

(a) (velocity)^3/2

(b) (distance)²


(c) (distance)-²

(d) (velocity)⅔​

Answers

Answered by PopularAnswerer01
126

Question:-

  • A particle moves a distance x in time t according to equation x = (t + 5)-¹. The acceleration of particle is proportional to

To Find:-

  • Find the acceleration of the particle is proportional to .

Solution:-

  • \sf \: v = \dfrac { dx } { dt } = { -( t + 5 ) }^{ -2 }

  • \sf \: v = \dfrac { dv } { dt } = { -2( t + 5 ) }^{ -3 }

Then ,

  • \sf \: { v }^{ \frac { 3 } { 2 } } = \dfrac { dx } { dt } = { -( t + 5 ) }^{ -3 }

  • \sf \: a \: \: \alpha \: \: { v }^{ \frac { 3 } { 2 } }
Answered by Anonymous
4

{\pmb{\underline{\sf{Required \:  Solution....}}}}

Distance (x) = (t + 5) {}^{ - 1}

Velocity = \frac{dx}{dt}

  : \implies  - 1(t + 5) {}^{ - 1 - 1}   \\ \boxed{:  \implies - 1(t + 5) {}^{ - 2} }

Acceleration = \frac{dx}{dt}

 :  \implies - 2(t + 5) {}^{ - 3}  \\  \:  \boxed{ :  \implies - 1(t + 5) {}^{ - 3}  }

______________________________

V {}^{ \frac{3}{2} }  =  - (t + 5) {}^{ - 3}

 a∝ - (t + 5) {}^{ - 2 \times  \frac{3}{2} }  \\  \boxed {a∝v {}^{ \frac{3}{2} } }

Option (a) : (Velocity)^3/2 is Correct

\sf\blue{hope \: this \: helps \: you!! \: }

@Mahor2111

___________♬♩♪♩ ♩♪♩♬__________

Similar questions