Physics, asked by hetuchauhan, 8 months ago

A particle moves in a straight line and its position
x at time t is given by x2 = 2+ t. Its acceleration
is given by?
answer is -¼x-³. explain how.​

Answers

Answered by shadowsabers03
7

The position of the particle at time \sf{t} is given by,

\longrightarrow\sf{x^2=t+2}

Differentiating with respect to \sf{t,}

\longrightarrow\sf{\dfrac{d}{dt}\left(x^2\right)=\dfrac{d}{dt}(t+2)}

\longrightarrow\sf{\dfrac{d}{dx}\left(x^2\right)\cdot\dfrac{dx}{dt}=1+0}

\longrightarrow\sf{2xv=1}

\longrightarrow\sf{v=\dfrac{1}{2}\,x^{-1}\quad\quad\dots(1)}

Again differentiating with respect to \sf{t,}

\longrightarrow\sf{\dfrac{dv}{dt}=\dfrac{d}{dt}\left(\dfrac{1}{2}\,x^{-1}\right)}

\longrightarrow\sf{a=\dfrac{1}{2}\cdot\dfrac{d}{dx}\left(x^{-1}\right)\cdot\dfrac{dx}{dt}}

\longrightarrow\sf{a=\dfrac{1}{2}\left(-x^{-2}\right)v}

From (1),

\longrightarrow\sf{a=-\dfrac{1}{2}\,x^{-2}\cdot\dfrac{1}{2}\,x^{-1}}

\longrightarrow\underline{\underline{\sf{a=-\dfrac{1}{4}\,x^{-3}}}}

This is the acceleration of the particle.

Similar questions