Physics, asked by yogo9930, 1 year ago

A particle moving with velocity v=20 sinπt what is the average velocity of psrticle in 0 to 1 sec

Answers

Answered by ashraysushantmdp
15

Explanation:

answer x=40/π .v=dx/dt=sin(πt)

Attachments:
Answered by nirman95
10

Given:

  • Velocity of particle is v = 20 sin(πt).

To find:

  • Average velocity from t = 0 to 1 sec ?

Calculation:

The average velocity can be calculated using CALCULUS as follows :

 \boxed{avg. \: v =  \frac{  \displaystyle \int_{0}^{1}v \: dt}{ \displaystyle \int_{0}^{1} \: dt} }

  • Now, putting necessary values :

 \implies \:avg. \: v =  \frac{  \displaystyle \int_{0}^{1}20 \sin(\pi t)  \: dt}{ \displaystyle \int_{0}^{1} \: dt}

 \implies \:avg. \: v = 20 \:  \frac{  \displaystyle \int_{0}^{1} \sin(\pi t)  \: dt}{ \displaystyle \int_{0}^{1} \: dt}

 \implies \:avg. \: v =  - 20 \:  \dfrac{  \displaystyle  \frac{ \cos(\pi t) }{\pi} \bigg|_{0}^{1}}{ 1 - 0}

 \implies \:avg. \: v =  20 \:  \dfrac{   \dfrac{ \cos(\pi t) }{\pi} \bigg|_{1}^{0}}{ 1 - 0}

 \implies \:avg. \: v =  20 \:  \dfrac{   \dfrac{ \cos(0) -  \cos(\pi)  }{\pi} }{ 1 - 0}

 \implies \:avg. \: v =  20 \:  \dfrac{   \dfrac{ \cos(0) -  \cos(\pi)  }{\pi} }{ 1 }

 \implies \:avg. \: v =  20  \times  \dfrac{   1 - ( - 1) }{ \pi }

 \implies \:avg. \: v =  20  \times  \dfrac{  2 }{ \pi }

 \implies \:avg. \: v =    \dfrac{ 40 }{ \pi }

 \implies \:avg. \: v =    12.73 \: m {s}^{ - 1}

So, average velocity is 40/π or 12.73 m/s

Similar questions