Physics, asked by AniruddhaK, 2 months ago

A particle of mass 2 kg is tied to a string of length 1 m is performing circular motion with the frequency 120 rpm.

Find the rotational Kinetic Energy of the particle.​

Answers

Answered by Anonymous
9

Answer:

  • Mass (M) = 2 kg
  • Length / Radius (R) = 1 m
  • Frequency = 120 rpm = 2 rps
  • Rotational kinetic energy = ?

First we need to calculate the moment of inertia :

\longrightarrow\:\rm I = MR^2 \\

\longrightarrow\:\rm I = 2 \times (1)^2 \\

\longrightarrow\: \underline{ \underline{\rm I = 2 \:  kg. {m}^{2}}}  \\

After finding moment of inertia we need to calculate the angular velocity of the particle

\longrightarrow\:\rm \omega = 2 \pi n \\

\longrightarrow\:\rm \omega = 2  \times 3.14  \times  \dfrac{120}{60} \\

\longrightarrow\:\rm \omega = 2  \times 3.14  \times  2 \\

\longrightarrow\: \underline{ \underline{\rm \omega  = 12.56 \:  {rad}^{ - 1}}} \\

Now, let's find the rotational kinetic energy of the particle :

\longrightarrow\:\rm K.E = \dfrac{1}{2}\times I \times \omega^2 \\

\longrightarrow\:\rm K.E = \dfrac{1}{2}\times 2 \times (12.56)^2 \\

\longrightarrow\:\rm K.E =(12.56)^2 \\

\longrightarrow\: \underline{ \underline{\rm K.E =157.75 \:J  }}\\

Similar questions