Physics, asked by rupamsharma, 11 months ago

A particle of mass 5gm is moving with speed 10cm/s along a straight line. A force of 10√2
dyne is applied at angle 45 degree with the initial line of motion of particle. Find change in KE of
particle in 1second.​

Answers

Answered by nirman95
5

Given:

A particle of mass 5gm is moving with speed 10cm/s along a straight line. A force of 10√2

dyne is applied at angle 45 degree with the initial line of motion of particle.

To find:

Change in KE in 1 second.

Diagram:

\boxed{\setlength{\unitlength}{1cm}\begin{picture}(6,6)\put(2, 2){\line(0, 1){2}}\put(2, 4){\line(1, 0){2}}\put(4, 4){\line(0, -1){2}}\put(4, 2){\line(-1, 0){2}}\put(3,3){\vector(1,0){2}}\put(1,2){\line(1,0){4}}\put(5,3){u}\put(3,3){\vector(1,1){2}}\put(5.25,5){F}\end{picture}}

Calculation:

Initial velocity along x axis = 10 cm/s

So , component of acceleration along x axis:

a_{x} =  \dfrac{10 \sqrt{2} }{5}  \cos( {45}^{ \circ} )

 =  > a_{x} =  \dfrac{10 \sqrt{2} }{5} \times  \dfrac{1}{ \sqrt{2} }

 =  > a_{x} = 2 \: cm {s}^{ - 2}

Initial velocity along y axis = 0 cm/s

So, component of acceleration along y axis:

a_{y} =  \dfrac{10 \sqrt{2} }{5}  \sin( {45}^{ \circ} )

 =  > a_{y} =  \dfrac{10 \sqrt{2} }{5} \times  \dfrac{1}{ \sqrt{2} }

 =  > a_{y} = 2 \: cm {s}^{ - 2}

So , Initial KE:

 =  \dfrac{1}{2} m {u}^{2}

 =  \dfrac{1}{2}  \times 5 \times  {(10)}^{2}

 =  250 \: g \: cm \:  {s}^{ - 2}

So , final KE:

 =  \dfrac{1}{2} m {(v_{x})}^{2}  +  \dfrac{1}{2} m {(v_{y})}^{2}

 =  \dfrac{1}{2}m  \bigg \{ {(v_{x})}^{2}  +  {(v_{y})}^{2}  \bigg \}

 =  \dfrac{1}{2}m  \bigg \{ {(10 + 2 \times 1)}^{2}  +  {(0 + 2 \times 1)}^{2}  \bigg \}

 =  \dfrac{1}{2}m  \bigg \{ {(12)}^{2}  +  {(2)}^{2}  \bigg \}

 =  \dfrac{1}{2}m  \bigg \{ 144 + 4  \bigg \}

 =  \dfrac{1}{2} \times 5 \times 148

 = 370 \: g \: cm \:  {s}^{ - 2}

So, change in KE

\Delta KE = 370 - 250 = 120 \: gcm {s}^{ - 2}

So, final answer is:

 \boxed{ \bf{ \large{\Delta KE =  120 \: gcm {s}^{ - 2} }}}

Similar questions