Physics, asked by mdammarsikendar, 6 months ago

A particle of mass m starts moving from origin along x-axis and its velocity
varies with position (x) as The work done by force acting on it during
first "t" seconds is

Answers

Answered by kulkarninishant346
4

Explanation:

mass = m. velocity v(x) = k √x

Acceleration a (t) = dv/dt = dv/dx * dx/dt

= k / (2√x) * v

= k² / 2

Force F(t) = m k² /2

Displacement = x(t) as the particle moves along x axis.

v(x) = dx/dt = k√x

=> dx/√x = k dt

Integrating on both sides:

=> 2 √x = k t + c

=> At t = 0, x = 0 and Hence, c= 0

=> x = k² t² / 4

Answered by shadowsabers03
21

Correct Question:-

A particle of mass \sf{m} starts moving from origin along x - axis and its velocity  varies with position \sf{x} as \sf{v=kx^{\frac{1}{2}}.} Find the work done by force acting on it during  first \sf{t} seconds.

Solution:-

The velocity varies with position as,

\sf{\longrightarrow v=kx^{\frac{1}{2}}}

\sf{\longrightarrow \dfrac{dx}{dt}=kx^{\frac{1}{2}}}

\sf{\longrightarrow dt=\dfrac{1}{k}\,x^{-\frac{1}{2}}\ dx}

Integrating,

\displaystyle\sf{\longrightarrow \int\limits_0^tdt=\dfrac{1}{k}\int\limits_0^xx^{-\frac{1}{2}}\ dx}

\displaystyle\sf{\longrightarrow t=\dfrac{2}{k}x^{\frac{1}{2}}}

\displaystyle\sf{\longrightarrow x=\dfrac{1}{4}\,k^2t^2}

Differentiating wrt \sf{t,}

\displaystyle\sf{\longrightarrow v=\dfrac{1}{2}\,k^2t}

Again differentiating wrt \sf{t,}

\displaystyle\sf{\longrightarrow a=\dfrac{1}{2}\,k^2}

Hence the work done,

\displaystyle\sf{\longrightarrow W=\int\limits_0^x F\ dx}

Taking \sf{F=ma} and \sf{dx=v\ dt,}

\displaystyle\sf{\longrightarrow W=\int\limits_0^t mav\ dt}

\displaystyle\sf{\longrightarrow W=\int\limits_0^t m\cdot\dfrac{1}{2}\,k^2\cdot\dfrac{1}{2}\,k^2t\ dt}

\displaystyle\sf{\longrightarrow W=\dfrac{1}{4}\,mk^4\int\limits_0^t t\ dt}

\displaystyle\sf{\longrightarrow\underline{\underline{W=\dfrac{1}{8}\,mk^4t^2}}}

Similar questions