Science, asked by anurag5992, 10 months ago

A particle starts its motion with velocity u and moves with uniform acceleration a for n second then find out distance travelled in n th second?​

Answers

Answered by BrainIyMSDhoni
27

Answer:

u +  \frac{a}{2} (2n - 1)

---------------------------------------------------------

Given

Initial Velocity = 'u'

Distance travelled = 'S'

Uniform Acceleration = 'a'

--------------------------------------------------------

We Know that

S = ut +  \frac{1}{2} a {t}^{2}

In the same way in 'n' seconds

Sn = un +  \frac{1}{2} a {n}^{2}

--------------------------------------------------------

According To Question

S(n - 1) = u(n - 1) +  \frac{1}{2} a {(n - 1)}^{2}

&

Snth = Sn - S(n - 1)

--------------------------------------------------------

Now on putting all values

=  > Snth = un +  \frac{a {n}^{2} }{2}  - [un - u +  \frac{a}{2}  {(n - 1)}^{2}]  \\  =  > Snth =  \cancel{un} +  \frac{a {n}^{2} }{2}  -  \cancel{un} + u -  \frac{a}{2} ( {n}^{2}  + 1 - 2n)

On Solving brackets

=  >  Snth =  \cancel{\frac{u {n}^{2}  }{2} } + u -   \cancel{\frac{u {n}^{2} }{2}}  - \frac{a}{2}   +  \frac{2na}{2} \\   =  > Snth =  u -  \frac{a}{2} +  \frac{2na}{2}

On Taking a/2 as Common

 \boxed{Snth = u +  \frac{a}{2} (2n - 1)}

Where

'n' is a natural number.

--------------------------------------------------------

Used Identity In the Solution

 {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

Answered by Anonymous
3

Answer:

particle velocity=u moves with acceleration a

=>distance travelled in n second =

un +  \frac{a {n}^{2} }{2}

=>distance travelled in n-1 second =

un - u +  \frac{(a )({n - 1})^{2} }2{} \\  \\ un - u  +  \:  \frac{a {n}^{2} }{2}   +  \frac{a}{2}  - an

distance travelled in n th second = u-a/2 + an

Similar questions