Physics, asked by juningoorang, 5 months ago

a particle travels 1/3 of its distance with the velocity of 30m/s,next 1/3 distance with the velocity of 40m/s and the remaining distance with the velocity of 50m/s calcutale the averaga speed of the particle​

Answers

Answered by shadowsabers03
6

Let the total distance be \sf{x.}

The first \sf{\dfrac{x}{3}} distance is travelled with the velocity of \sf{30\ m\,s^{-1}.} The time taken for this,

\sf{\longrightarrow t_1=\dfrac{\left(\frac{x}{3}\right)}{30}}

\sf{\longrightarrow t_1=\dfrac{x}{90}}

The next \sf{\dfrac{x}{3}} distance is travelled with the velocity of \sf{40\ m\,s^{-1}.} The time taken for this,

\sf{\longrightarrow t_2=\dfrac{\left(\frac{x}{3}\right)}{40}}

\sf{\longrightarrow t_2=\dfrac{x}{120}}

The final \sf{\dfrac{x}{3}} distance is travelled with the velocity of \sf{50\ m\,s^{-1}.} The time taken for this,

\sf{\longrightarrow t_3=\dfrac{\left(\frac{x}{3}\right)}{50}}

\sf{\longrightarrow t_3=\dfrac{x}{150}}

Hence average velocity,

\sf{\longrightarrow v=\dfrac{x}{t_1+t_2+t_3}}

\sf{\longrightarrow v=\dfrac{x}{\dfrac{x}{90}+\dfrac{x}{120}+\dfrac{x}{150}}}

\sf{\longrightarrow v=\dfrac{90\times120\times150}{90\times120+90\times150+120\times150}}

\sf{\longrightarrow\underline{\underline{v=38.3\ m\,s^{-1}}}}

Similar questions