Math, asked by novakbishnushaw, 9 months ago

A person invests ₹10000 for two years at a certain rate of interest, compounded annually. At the end of one year this sum amounts to ₹11200. Calculate:-
i) The rate of interest.
ii) The amount at the end of second year.

Answers

Answered by PeepingMoon
7

Answer:

Please see the attachment for answer

Step-by-step explanation:

Hope it helps

Please mark as brainliest

Please follow me dear friend

Please

Have a great day dear

Attachments:
Answered by MaIeficent
78

Step-by-step explanation:

\bf{\underline{\underline\red{Given:-}}}

  • Amount invested by the person = ₹10000

  • Time = 2 years.

  • At the end of 1 year the sum amounts to ₹11200

\bf{\underline{\underline\blue{To\:Find:-}}}

  • The rate of interest.

  • The amount at the end of second year.

\bf{\underline{\underline\green{Solution:-}}}

As we know that:-

The amount is given by the formula:-

 \boxed{ \rm  \leadsto Amount \:  = P{ \bigg(1 +  \frac{r}{100} \bigg) }^{t}  }

Here:-

• Amount = ₹11200

• P = principal = ₹10000

• r = rate of interest

• t = time = 1 year

Substituting the values:-

\rm  \longrightarrow 11200\:  = 10000 { \bigg(1 +  \dfrac{r}{100} \bigg) }^{1}

\rm  \longrightarrow 11200\:  = 10000  \bigg(1 +  \dfrac{r}{100} \bigg)

\rm  \longrightarrow  \dfrac{11200}{10000}\:  =  \bigg(1 +  \dfrac{r}{100} \bigg)

\rm  \longrightarrow  \dfrac{112}{100}\:  =  1 +  \dfrac{r}{100}

\rm  \longrightarrow  \dfrac{112}{100}\: - 1  =    \dfrac{r}{100}

\rm  \longrightarrow  \dfrac{112 - 100}{100}\:   =    \dfrac{r}{100}

\rm  \longrightarrow  \dfrac{12 }{100}\:   =    \dfrac{r}{100}

\rm  \longrightarrow  \dfrac{12 }{100}\: \times 100   =    {r}

\rm  \longrightarrow r = 12\%

Amount after 2 years.

• P = principal = ₹10000

• r = rate of interest = 12%

• t = time = 2 years

Substituting the values.

\rm  \longrightarrow    10000 { \bigg(1 +  \dfrac{12}{100} \bigg) }^{2}

\rm  \longrightarrow    10000 { \bigg(1 +  \dfrac{3}{25} \bigg) }^{2}

\rm  \longrightarrow    10000 { \bigg( \dfrac{28}{25} \bigg) }^{2}

\rm  \longrightarrow   \dfrac{10000 \times 28 \times 28}{25 \times 25}

\rm  \longrightarrow   16 \times 28 \times 28

\rm  \longrightarrow  12544

Therefore:-

 \boxed{\rm  \pink{   Rate \: of \: interest \:  = 12\%} }

 \boxed{\rm  \purple{   Amount \: at \: the \: end \: of \: 2 \: years  = Rs.12544} }

Similar questions