Math, asked by singhmainpratap4, 9 months ago

A person invests rupees 10000 for the two years at a certain rate of interest, compounded annually. At the end of one year this sum amounts to rupees 11200. Calculate:(i) the rate of interest per annum. (ii) the amount at the end of second year.​

Answers

Answered by mddilshad11ab
98

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{Given\:in\:1st\:case:}}}}

  • \sf{Principal=Rs.10000}
  • \sf{Amount=Rs.11200}
  • \sf{Time=1\: year}

\large{\underline{\red{\rm{To\: Find:}}}}

  • \rm\green{Rate\:of\: Interest}
  • \rm\red{Amount\: after\:2\: year's}

\large{\underline{\red{\rm{Using\: formula\:Now:}}}}

\rm{\implies A=P(1+\dfrac{r}{100})^n}

\rm{\implies 11200=10000(1+\dfrac{r}{100})^1}

\rm{\implies \dfrac{28}{25}=\dfrac{100+r}{100}}

\rm{\implies 2500+25r=2800}

\rm{\implies 25r=2800-2800}

\rm{\implies \cancel{25}r=\cancel{300}}

\rm\red{\implies r=12\%}

\sf\purple{Now\:calculate\:amount\: for\:2\: year's}

\rm{\implies A=P(1+\dfrac{r}{100})^n}

\rm{\implies A=10000(1+\dfrac{12}{100})^2}

\rm{\implies A=10000(\dfrac{112}{100})^2}

\rm{\implies A=10000*\dfrac{112}{100}*\dfrac{112}{100}}

\rm{\implies A=112*112}

\rm\red{\implies A=Rs.12544}

Hence,

\sf\purple{Amount\:at\:the\:of\:2\: year's=Rs.12544}

\rm\green{Rate\:of\: Interest=12\%}

Similar questions
Math, 9 months ago