Math, asked by Libra786, 11 months ago

A person on tour has Rs.4200 for his expenses. If he extends his tour for 3 days,he has cut down his daily expenses by Rs.70. Find the original duration of the tour.

Answers

Answered by Anonymous
26

SOLUTION:-

Given:

•A person on tour has Rs.4200 for his expenses.

•He extends his tour for 3 days, he cut down his daily expenses by Rs.70.

To find:

The original duration of the tour.

Explanation:

•Assume R days be the original duration of the tour.

•Since, increased duration of the tour,

=) (R+3) days.

Now,

Daily \: expenses =  \frac{Total \: amount}{Number \: o f \: days}

According to the question:

 =  >  \frac{4200}{R}  -  \frac{4200}{R + 3}  = 70 \\  \\  =  >  \frac{4200(R + 3) - 4200(R)}{R(R + 3)}  = 70 \\  \\  =  >  \frac{4200(R + 3 - R)}{R(R + 3)}  = 70 \\  \\  =  >  \frac{3}{R(R + 3)}  =  \frac{70}{4200}  \\  \\  =  >  \frac{3}{R(R + 3)}  =  \frac{1}{60}  \\ [cross \: multiplication] \\  =  > R(R + 3) = 180 \\  \\  =  >  {R}^{2}  + 3R - 180 = 0 \\  \\  =  >  {R}^{2}  + 15R - 12R- 180 = 0 \\  \\  =  > R(R + 15) - 12(R + 15) = 0 \\  \\  =  > (R + 15)(R - 12) = 0 \\  \\  =  > R + 15 = 0 \:  \:  \:  \: or \:  \:  \:  \: R - 12 = 0 \\  \\  =  > R =  - 15 \:  \:  \:  \: or \:  \:  \:  \: R = 12

Number of the days can't be negative.

So,

R= 12 days.

Follow Me :)

Similar questions