Math, asked by 7060200476, 9 months ago

a person sells one more then half of the number of total orange to the first customer, one more than the one third of remaining oranges to the second customer and one more than one fifth of the remaining oranges to the third customer. At last he finds that three oranges are left with him find the number of oranges he had .​

Answers

Answered by pmd43638
8

Step-by-step explanation:

so \: it \: is \: given \: that \: left \: oranges \: are \: 3 \\ hence \\  \frac{4x}{15}  -  \frac{42}{15}  \\ 4x - 42 = 45 \\ 4x = 87 \\ x \:  \:   = 22 \:  \\  \: so \: there \: are \: 22 \: oranges \: initialy

I hope helpful for you!

Attachments:
Answered by inbavalli100910
0

Answer:

20

Step-by-step explanation:

Let the number of apples = x

He sells apples to the first customer = x /2 + 1

He sells apples to the second customer = 1/3 { x - ( x/2 +1) } + 1

= (x+4) / 6

He sells apples to the third customer = 1 / 5 { x - [ (x / 2) + 1) + (x+4) / 6 ] + 1

= (x + 10) /15

Finally he have 3 apples left then

x = (x +2) / 2 + (x+4) / 6 + (x + 10) /15 +3

x = {15(x +2)+5(x+4) +2 (x + 10) + 90} / 30

30x = 22x +160

8x = 160

x = 20.

∴number of apples = 20.

brainliest

Similar questions