A plus b ka whole square minus 4 a b x minus a minus b whole square is equal to zero
Answers
Answered by
1
A plus b ka whole square minus 4 a b x minus a minus b whole square is equal to zero
Given,
(a+b)^2 - 4ab - (a-b)^2 = 0
we know the formulae
(a+b)^2 = a^2 + 2ab + b^2
(a-b)^2 = a^2 - 2ab + b^2
Now, we have,
LHS
= (a+b)^2 - 4ab - (a-b)^2
= (a^2 + 2ab + b^2) - 4ab - (a^2 - 2ab + b^2)
= a^2 + 2ab + b^2 - 4ab - a^2 + 2ab - b^2
= 4ab - 4ab
0 = 0 RHS
Hence proved that, LHS = RHS
Answered by
3
The value of x in the given expression = 1
Step-by-step explanation:
The given expression:
To find, the value of x in the given expression.
∴
⇒
Using the algebraic identity,
⇒ 4ab - 4abx = 0
⇒ 4abx = 4ab
⇒ x =
⇒ x = 1
∴ The value of x in the given expression = 1
Similar questions