A point moves along a circle with a velocity v = at, where a = 0.50 m/s^2. Find the total acceleration
Answers
Answered by
34
» Tangential Acceleration :-

______________________
» Centripetal Acceleration :-

__________________
Now,
=> t = 0.1×T

-_______________________
So,

___________________________
Then
» Total Acceleration :-

________________[ANSWER]
======================================
_-_-_-_✌☆
☆✌_-_-_-_
______________________
» Centripetal Acceleration :-
__________________
Now,
=> t = 0.1×T
-_______________________
So,
___________________________
Then
» Total Acceleration :-
________________[ANSWER]
======================================
_-_-_-_✌☆
Similar questions