Physics, asked by Ahmadharl6671, 1 year ago

A point moves along a circle with a velocity v = at, where a = 0.50 m/s^2. Find the total acceleration

Answers

Answered by Deepsbhargav
34
» Tangential Acceleration :-

 = > a _{t} = \frac{dv}{dt} \\ \\ = > a _{t} = \frac{d}{dt} (at) \\ \\ = > a _{t} = a = 0.50 \: \frac{m}{ {s}^{2} }

______________________

» Centripetal Acceleration :-

 = > a _{c} = \frac{ {v}^{2} }{r} = \frac{ {(at)}^{2} }{r} = \frac{ {a}^{2} {t}^{2} }{r} \\ \\

__________________

Now,

=> t = 0.1×T

 = >t = 0.1 \times \frac{2\pi.r}{v} \\ \\ = > t = \frac{0.2\pi.r}{at} \\ \\ = > {t}^{2} = \frac{0.2\pi.r}{a}

-_______________________

So,

 = > a _{c} = \frac{ {a}^{2} {t}^{2} }{r} = \frac{ {a}^{2} }{r} \times \frac{0.2\pi.r}{a} \\ \\ = > a _{c} = 0.2a\pi = 0.2 \times 0.5 \times 3.14 \\ \\ = > a _{c} = 0.31 \: \frac{m}{ {s}^{2} }

___________________________

Then

» Total Acceleration :-

 = > a = \sqrt{ {a _{t}}^{2} + {a _{c} }^{2} } \\ \\ = > a = \sqrt{ {(0.50)}^{2} + {(0.31)}^{2} } \\ \\ = > a = 0.6 \: \frac{m}{ {s}^{2} }

________________[ANSWER]

======================================

_-_-_-_✌☆BE \: \: \: \: BRAINLY☆✌_-_-_-_
Similar questions