Math, asked by VinCus, 5 months ago

A point P is 18 cm from the centre of a circle. The radius of the circle is 12 cm. Find the length of the tangent drawn to the circle from the point P
 \huge \rm \:Note:
Spammers will be reported!.....​

Answers

Answered by aaditya172021
4

Answer: HOPE THIS WILL HELP YOU

Step-by-step explanation:

Attachments:
Answered by IdyllicAurora
25

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

Here the Concept of Pythagoras Theorem has been used. We see that we are given the distance of the point P and radius of the Circle. Now if join all the points including Tangent, it forms a triangle. By theorem we know that Radius is perpendicular ⊥ to the Tangent where they meet. This can be seen from the diagram. Using this, we can find the length of Tangent.

Let's do it !!

_____________________________________________

Formula Used :-

\\\;\boxed{\sf{\pink{(Hypotenuse)^{2}\;=\;\bf{(Base)^{2}\;+\;(Height)^{2}}}}}

_____________________________________________

Solution :-

Given (including information from figure) ,

  • Let the centre of the circle be O

  • Let the point of contact of radius and tangent be point S

  • Then, joining all the points POS forms a Triangle.

» Distance of Point P = OP = 18 cm

» Radius of circle = OS = 12 cm

» Length of the tangent = PS

Theorem : When a tangent is produced from an external point to the circle and the radius is made to contact with tangent, then radius is perpendicular () to the tangent.

This means OSP = 90° . Also, POS is right angled triangle since OSP is a right angle .

OS PS

∠OSP = 90°

Pythagoras Theorem : The square of Hypotenuse is equal to the sum of squares of Base and Height.

From figure we see,

• Base = OS = 12 cm

• Hypotenuse = OP = 18 cm

• Height = PS

On applying Pythagoras Theorem here, we get

\\\;\sf{:\rightarrow\;\;(Hypotenuse)^{2}\;=\;\bf{(Base)^{2}\;+\;(Height)^{2}}}

By applying values, we get

\\\;\sf{:\Longrightarrow\;\;(OP)^{2}\;=\;\bf{(OS)^{2}\;+\;(PS)^{2}}}

\\\;\sf{:\Longrightarrow\;\;(18)^{2}\;=\;\bf{(12)^{2}\;+\;(PS)^{2}}}

\\\;\sf{:\Longrightarrow\;\;324\;=\;\bf{144\;+\;(PS)^{2}}}

\\\;\sf{:\Longrightarrow\;\;(PS)^{2}\;=\;\bf{324\;-\;144}}

\\\;\sf{:\Longrightarrow\;\;(PS)^{2}\;=\;\bf{180}}

\\\;\sf{:\Longrightarrow\;\;(PS)\;=\;\bf{\sqrt{180}}}

\\\;\sf{:\Longrightarrow\;\;(PS)\;=\;\bf{\sqrt{2\:\times\:2\:\times\:3\:\times\:3\:\times\:5}}}

\\\;\sf{:\Longrightarrow\;\;(PS)\;=\;\bf{(2\:\times\:3)\sqrt{5}}}

\\\;\bf{:\Longrightarrow\;\;(PS)\;=\;\bf{\orange{6\sqrt{5}\;\:cm}}}

\\\;\bf{:\Longrightarrow\;\;(PS)\;=\;\bf{\orange{13.42\;\;cm}}}

*Note :: Here 65 13.42 . So we can use any value for the answer.

\\\;\underline{\boxed{\tt{Hence,\:\;length\;\:of\;\:tangent\;\:=\;\bf{\purple{13.42\;\:cm}\:\;\tt{or}\:\;\bf{\purple{6\sqrt{6}\;\:cm}}}}}}

_____________________________________________

More Formulas related to Circle ::

\\\;\tt{\leadsto\;\;Area\;of\;Sector\;=\;\dfrac{\pi r^{2}\theta}{360^{\circ}}}

\\\;\tt{\leadsto\;\;Length\;of\;chord\;=\;\dfrac{2\pi r\theta}{360^{\circ}}}

\\\;\tt{\leadsto\;\;Area\;of\;Segment\;=\;\dfrac{\pi r^{2}\theta}{360^{\circ}}\;-\;\dfrac{1}{2}\:r^{2}\sin\theta}

\\\;\tt{\leadsto\;\;Area\;of\;Circle\;=\;\pi r^{2}}

\\\;\tt{\leadsto\;\;Perimeter\;of\;Circle\;=\;2\pi r}

_____________________________________________

Attachments:
Similar questions
Math, 2 months ago