Math, asked by JoylynFaith, 1 year ago

A point Q (X,Y) is on the line segment passing through R(-2, 5) and S (4,1). Find the coordinates of Q if it is twice as far from R as from S

Answers

Answered by BrainlyConqueror0901
7

Answer:

\huge{\pink{\green{\sf{\therefore Q(0,\frac{11}{3})}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

▪In the given question information is given about a line segment whose two end points coordinates are given.

▪And one coordinate between these two ends divides this line the given ratio.

▪According to given question :

 \underline \bold{given : } \\   \implies\bold{coordinate \: of \: R( - 2,5)} \\ \implies \bold{coordinate \: of \: S( - 4.1)} \\  \implies \bold{m : n = 1 :2}  \\  \\  \underline \bold{to \: find  : } \\ \implies \bold{coordinate \: of \: Q( x,y)}

▪According to the section formula(internal ratio).

 \implies x =  \frac{mx_{2} +  nx_{1} }{m + n}  \\  \implies x =  \frac{1 \times 4 + 2 \times ( - 2)}{1 + 2}  \\  \implies x =  \frac{4 - 4}{3}  \\   \bold{\implies x = 0} \\  \\  \implies y =  \frac{ my_{2} +  ny_{1}}{m + n}  \\  \implies y =  \frac{1 \times 1 + 2 \times 5}{1 + 2}   \\  \implies y =  \frac{1 + 10}{ 3 }   \\   \bold{\implies y =  \frac{11}{3} }\\\\\bold{\therefore Q(0,\frac{11}{3})}

_________________________________________

Similar questions