Math, asked by Anonymous, 7 months ago

a point traversed half a circle of radius R = 160 cm during time interval τ = 10.0 s. Calculate the following quantities averaged over that time:

\rm
(a) the mean velocity \rm  \big\langle v \big\rangle ;

(b) the modulus of mean velocity vector \rm | \big\langle v \big\rangle | ;

(c) the modulus of mean vector of the total acceleration \rm | \big\langle w \big\rangle | if the point moved with constant tangent acceleration.​

Answers

Answered by Anonymous
104

(a) mean velocity

⟨v⟩ = \sf \dfrac{total\:distance\:covered}{time\:ellapsed}

\tt = \dfrac{s}{t}

\tt = 50\: cm/s \:\;\;\;\;\; (1)

\rm

(b) modulus of mean velocity vector

\tt | \langle \vec{v} \rangle | = \dfrac{\Delta |\vec{r}|}{\Delta t} = \dfrac{2R}{\tau}

\tt = 32\: cm/s \:\;\;\:\;\; (2)

\rm

(c) Let the point moves from i to f along the half circle (Fig.) and v_0 and v be the space at the point respectively.

\tt \sf{we\: have} \:\:\:\;\;\;\;\;\; \dfrac{dv}{dt} = w_t

\tt \langle v \rangle = \left( \dfrac{\displaystyle\int_{0}^{t} \tt (v_0 + w_t t)dt}{\displaystyle\int_{0}^{t} \tt dt} \right)

\tt = \dfrac{v_0+v}{2} ....(3)

\rm

so from 1&3,

\tt \dfrac{v_0+v}{2} = \dfrac{\pi R}{\tau} ....(4)

\rm

\tt | \langle \vec{v} \rangle | = \dfrac{2\pi R}{\tau^2}

Similar questions