Math, asked by Hffjgkjghj, 1 year ago

A pole of height 14 metre cast a 10 metre long shadow on the ground at the same time a tower cast a 70 metre long shadow on ground find the height of Tower

Answers

Answered by BrainlyConqueror0901
19

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Height\:of\:tower=98\:m}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a pole of height 14 metre cast a 10 metre long shadow on the ground at the same time a tower cast a 70 metre long shadow on ground.

• We have to find the height of Tower

 \underline \bold{Given : } \\  \implies Height \: of \: pole = 14 \: m \\  \\  \implies Shadow \: of \: pole = 10 \: m \\  \\  \implies Shadow \: of \: tower = 70 \: m \\  \\ \underline \bold{To \: Find : } \\  \implies Height \: of \: tower = ?

• According to given question :

 \bold{For \: pole : } \\   \implies tan  \: \theta =  \frac{p}{b}  \\  \\  \implies tan \:  \theta =  \frac{Height  \: of \: pole} {Shadow \: of \: pole}  \\  \\  \implies tan  \: \theta =  \frac{14}{10}  \\  \\  \implies tan \:  \theta =  \frac{7}{5}  \\  \\  \bold{For \: tower : } \\  \implies  tan \:  \theta = \frac{Height \: of \: tower}{Shadow \: of \: tower}  \\  \\  \implies  \frac{7}{5}  =  \frac{H}{70}  \\  \\  \implies 4 \: H= 490\\  \\  \implies H =  \frac{ \cancel{490}}{ \cancel{5 }}  \\  \\   \bold{\implies H= 98 \: m}

Answered by Anonymous
65

AnswEr :

Height of Tower is 98 metre.

Explanation :

As Both the Pole and the Tower are At Same Angle. So Let's Take that Angle as ∅.

 \Rightarrow\bf{\angle\:Cast\:by\:Pole = \angle\:Cast\:by\:Tower}

 \Rightarrow\bf{tan \theta=Tan \theta}

 \Rightarrow\bf{ \dfrac{p}{b}= \dfrac{P}{B}}

 \Rightarrow\bf{ \dfrac{Height\:of\:Pole}{Shadow\:of\:Pole}= \dfrac{Height\:of\:Tower}{Shadow\:of\:Tower}}

 \Rightarrow\bf{ \dfrac{14}{10}= \dfrac{P}{70}}

 \Rightarrow\bf{ P= \dfrac{14\times 70}{10}}

 \Rightarrow\bf{ P= 14\times 7}

 \Rightarrow\boxed{\large{\bf{ P= 98m}}}

 \large\therefore Height of Tower is 98m.

Similar questions