Math, asked by vyshu2647, 21 days ago

A positive number is 6 times another number. If 40 is added to both the numbers, then one of the new numbers becomes twice the other new number. What are the numbers?

Answers

Answered by Anonymous
16

Answer:

Given :-

  • A positive number is 6 times another number.
  • 40 is added to both the numbers, then one of the new numbers becomes twice the other new number.

To Find :-

  • What are the numbers.

Solution :-

Let,

\mapsto \bf Another\: Number =\: a

\mapsto \bf Positive\: Number =\: 6a

40 is added to both the numbers :

\leadsto \sf Another\: Number =\: (a + 40)

\leadsto \sf Positive\: Number =\: (6a + 40)

According to the question,

\implies \sf 6a + 40 =\: 2(a + 40)

\implies \sf 6a + 40 =\: 2a + 80

\implies \sf 6a - 2a =\: 80 - 40

\implies \sf 4a =\: 40

\implies \sf a =\: \dfrac{\cancel{40}}{\cancel{4}}

\implies \sf a =\: \dfrac{10}{1}

\implies \sf\bold{\purple{a =\: 10}}

Hence, the required numbers are :

Another Number :

\longrightarrow \sf Another\: Number =\: a

\longrightarrow \sf\bold{\red{Another\: Number =\: 10}}

Positive Number :

\longrightarrow \sf Positive\: Number =\: 6a

\longrightarrow \sf Positive\: Number =\: 6 \times 10

\longrightarrow \sf\bold{\red{Positive\:  Number =\: 60}}

{\small{\bold{\underline{\therefore\: The\: numbers\: are\: 10\: and\: 60\: .}}}}

Answered by adityakp95
3

Answer:

Given :-

A positive number is 6 times another number.

40 is added to both the numbers, then one of the new numbers becomes twice the other new number.

To Find :-

What are the numbers.

Solution :-

Let,

\mapsto \bf Another\: Number =\: a↦AnotherNumber=a

\mapsto \bf Positive\: Number =\: 6a↦PositiveNumber=6a

❒ 40 is added to both the numbers :

\leadsto \sf Another\: Number =\: (a + 40)⇝AnotherNumber=(a+40)

\leadsto \sf Positive\: Number =\: (6a + 40)⇝PositiveNumber=(6a+40)

According to the question,

\implies \sf 6a + 40 =\: 2(a + 40)⟹6a+40=2(a+40)

\implies \sf 6a + 40 =\: 2a + 80⟹6a+40=2a+80

\implies \sf 6a - 2a =\: 80 - 40⟹6a−2a=80−40

\implies \sf 4a =\: 40⟹4a=40

\implies \sf a =\: \dfrac{\cancel{40}}{\cancel{4}}⟹a=

4

40

\implies \sf a =\: \dfrac{10}{1}⟹a=

1

10

\implies \sf\bold{\purple{a =\: 10}}⟹a=10

Hence, the required numbers are :

❒ Another Number :

\longrightarrow \sf Another\: Number =\: a⟶AnotherNumber=a

\longrightarrow \sf\bold{\red{Another\: Number =\: 10}}⟶AnotherNumber=10

❒ Positive Number :

\longrightarrow \sf Positive\: Number =\: 6a⟶PositiveNumber=6a

\longrightarrow \sf Positive\: Number =\: 6 \times 10⟶PositiveNumber=6×10

\longrightarrow \sf\bold{\red{Positive\: Number =\: 60}}⟶PositiveNumber=60

{\small{\bold{\underline{\therefore\: The\: numbers\: are\: 10\: and\: 60\: .}}}}

∴Thenumbersare10and60.

Similar questions