A printer numbers the pages of a book starting with 1 and uses 3189 digits in all. how many pages does the book have? solve
Answers
remain=3180
from 10 to99 page
total digit used=90×2=180
remain=3000
from 100to999
total digit used =900×3=2700
remain=300
total 4 digit no. possible=300/4=75
total page= 999+75=1074
Given:
A book starts with page 1.
It uses 3189 digits in the book.
To FInd:
The number of pages in the book
Solution:
Number of digits used in the 1-digit pages:
1-digit pages = Page 1 to Page 9
Number of pages = 9
Number of digit used = Number of pages x Number of digits per page
Number of digits used = 9 x 1
Number of digits used = 9
Number of digits used in the 2-digit pages:
2-digit pages = Page 10 to Page 99
Number of pages = 90
Number of digit used = Number of pages x Number of digits per page
Number of digits used = 90 x 2
Number of digits used = 180
Number of digits used in the 3-digit pages:
3-digit pages = Page 100 to Page 999
Number of pages = 900
Number of digit used = Number of pages x Number of digits per page
Number of digits used = 900 x 3
Number of digits used = 2700
Number of digits left:
Number of digits left = 3189 - 9 - 180 - 2700
Number of digits left = 300
Number of digits used in the 4-digit pages:
Number of pages = 300 ÷ 4
Number of pages = 75
Find the number of pages used:
Total number of pages = 9 + 90 + 900 + 75
Total number of pages = 1074
Answer: The book has 1074 pages.