Physics, asked by shamkuwar647, 9 months ago

a projectile can have same range from two angles of projection with same initial speed .If H1 and H2 be the maximum height then​

Answers

Answered by shadowsabers03
7

Let the angle of projection for the projectile in the two projections be \sf{\theta_1} and \sf{\theta_2} respectively, where \sf{\theta_1\neq\theta_2.} Let the initial speed be u which is same in both cases.

The horizontal range of projectile is,

\displaystyle\longrightarrow\sf{R=\dfrac{u^2\sin(2\theta)}{g}}

Ranges in both cases are same.

\displaystyle\longrightarrow\sf{R_1=R_2}

\displaystyle\longrightarrow\sf{\dfrac{u^2\sin(2\theta_1)}{g}=\dfrac{u^2\sin(2\theta_2)}{g}}

\displaystyle\longrightarrow\sf{\sin(2\theta_1)=\sin(2\theta_2)}

Since \sf{\theta_1\neq\theta_2,} possibly,

\displaystyle\longrightarrow\sf{2\theta_1+2\theta_2=180^o}

Because we know that \sf{\sin(180^o-\theta)=\sin\theta.}

\displaystyle\longrightarrow\sf{\theta_1+\theta_2=90^o}

\displaystyle\longrightarrow\sf{\theta_2=90^o-\theta_1\quad\quad\dots(1)}

The maximum height of the projectile in the first case is,

\displaystyle\longrightarrow\sf{H_1=\dfrac{u^2\sin^2\theta_1}{2g}\quad\quad\dots(2)}

And that in the second case is,

\displaystyle\longrightarrow\sf{H_2=\dfrac{u^2\sin^2\theta_2}{2g}\quad\quad\dots(3)}

Dividing (2) by (3),

\displaystyle\longrightarrow\sf{\dfrac{H_1}{H_2}=\dfrac{\dfrac{u^2\sin^2\theta_1}{2g}}{\dfrac{u^2\sin^2\theta_2}{2g}}}

\displaystyle\longrightarrow\sf{\dfrac{H_1}{H_2}=\dfrac{\sin^2\theta_1}{\sin^2\theta_2}}

From (1),

\displaystyle\longrightarrow\sf{\dfrac{H_1}{H_2}=\dfrac{\sin^2\theta_1}{\sin^2(90^o-\theta_1)}}

Since \sf{\sin(90^o-\theta)=\cos\theta,}

\displaystyle\longrightarrow\sf{\dfrac{H_1}{H_2}=\dfrac{\sin^2\theta_1}{\cos^2\theta_1}}

\displaystyle\longrightarrow\sf{\dfrac{H_1}{H_2}=\tan^2\theta_1}

\displaystyle\longrightarrow\sf{\underline{\underline{H_1=H_2\tan^2\theta_1}}}

In terms of \sf{\theta_2,}

\displaystyle\longrightarrow\sf{H_1=H_2\tan^2(90^o-\theta_2)}

Since \sf{\tan(90^o-\theta)=\cot\theta,}

\displaystyle\longrightarrow\sf{\underline{\underline{H_2=H_1\tan^2\theta_2}}}

Similar questions