Physics, asked by mahaku, 8 months ago

A projectile cover double range as compare to its

maximum height attained. The angle of projection

from horizontal is–​

Answers

Answered by nirman95
18

Given:

Projectile range is double in magnitude as compared to the maximum height reached by that object

To find:

Angle of projection.

Calculation:

Let initial velocity be u , gravity be g and angle of projection be \theta

range = 2 \times (max \: height)

 =  >  \dfrac{ {u}^{2} \sin(2 \theta)  }{g}  = 2 \times  \bigg \{ \dfrac{ {u}^{2}  { \sin}^{2}( \theta) }{2g}  \bigg \}

 =  >  \dfrac{ {u}^{2} \sin(2 \theta)  }{g}  =  \cancel2 \times  \bigg \{ \dfrac{ {u}^{2}  { \sin}^{2}( \theta) }{ \cancel{2}g}  \bigg \}

 =  >  \dfrac{ \cancel{ {u}^{2}} \sin(2 \theta)  }{ \cancel g}  =   \dfrac{  \cancel{{u}^{2} } { \sin}^{2}( \theta) }{  \cancel g}

 =  >  \sin(2 \theta)  =  { \sin}^{2} ( \theta)

 =  >  2 \sin( \theta)  \cos( \theta)  =  { \sin}^{2} ( \theta)

 =  >  \dfrac{ \sin( \theta) }{ \cos( \theta) }  = 2

 =  >  \tan( \theta)  = 2

 =  >  \theta =  { \tan}^{ - 1} (2)

So , angle of Projection is

 \boxed{ \red{ \bold{\theta =  { \tan}^{ - 1} (2)}}}

Answered by Anonymous
28

\large \underline{\underline{\mathfrak{Answer : }}}

  • Angle of projection is \sf{\tan^{-1} (2)}

\underline{\underline{\mathfrak{Step-By-Step -Explanation \: :}}}

GiveN :

  • A projectile covers double range as compared to its maximum hight.

To FinD :

  • Angle of Projection

SolutioN :

\longrightarrow \sf{Range \: = \: 2(Max. \: Height)} \\ \\ \longrightarrow \sf{\dfrac{u^2 \sin 2 \theta}{g} \: = \: \cancel{2} \bigg( \dfrac{u^2 \sin ^2 \theta}{\cancel{2}g} \bigg) } \\ \\ \longrightarrow \sf{\dfrac{\cancel{u^2} \sin 2 \theta}{\cancel{g}} \: = \: \dfrac{\cancel{u^2} \sin ^2 \theta }{\cancel{g}}} \\ \\ \longrightarrow \sf{\sin 2 \theta \: = \: \sin ^2 \theta} \\ \\ \longrightarrow \sf{2 \cancel{\sin \theta} \cos \theta \: = \: \sin^{\cancel{2}} \theta} \\ \\ \longrightarrow \sf{2 \cos \theta \: = \: \sin \theta } \\ \\ \longrightarrow \sf{2 \: = \: \dfrac{\sin \theta}{\cos \theta}} \\ \\ \longrightarrow \sf{\tan \theta \: = \: 2} \\ \\ \Large \underline{\boxed{\sf{\theta \: = \: \tan^{-1} (2)}}}

_________________________________

\boxed{\begin{minipage}{5cm} {\large{\underline{\underline{\textsf{\textbf{Formulae \: Used \: :}}}}}} \\ \\ \bullet \: \sf{R \: = \: \dfrac{u^2 \sin 2 \theta}{g}} \\ \\ \bullet \: \sf{H_{max} \: = \: \dfrac{u^2 \sin ^2 \theta}{2g}} \\ \\ \bullet \: \sf{\sin 2 \theta \: = \: 2 \sin \theta \cos \theta} \\ \\ \bullet \: \sf{\tan \theta \: = \: \dfrac{\sin \theta}{\cos \theta}} \end{minipage}}

Similar questions