Physics, asked by Rohitsirohi7781, 9 months ago

A projectile has a range of 50 m and reaches a maximum height of 10 m. what is the elevation of the projectile?

Answers

Answered by Unni007
22

We know ,

  • Horizontal range   \sf R = \dfrac{u^2sin 2\theta}{g}   --------------- (1)

  • Maximum height   \sf H = \dfrac{u^2sin^2\theta}{2g}   --------------- (2)

Dividing (1) by (2) and solving, we get :

\sf \dfrac{R}{H} = \dfrac{4}{tan\:\theta}    --------------------- (3)

Given,

  • Range (R) = 50 m
  • Height (H) = 10 m

Substituting the value in (3), we get :

\implies\sf \dfrac{50}{10} = \dfrac{4}{tan \:\theta}

\implies\sf 5 = \dfrac{4}{tan \:\theta}

\implies\sf tan\:\theta = \dfrac{4}{5}

\implies\sf \theta = tan^{-1} \:\dfrac{4}{5}

\implies\sf \theta =  38.6598 \:degrees

\huge\boxed{\rm Elevation\:of\:projectile=38.6598\:\:degrees}

Answered by Anonymous
8

Solution:-

Given

 \rm \ \: :  \implies \: Height(H) = 10m

 \rm :  \implies \: Range (R)\:  = 50m

To find

 \rm \:  \to \: elevation \: of \: the \: projectile

Formula of maximum height

 \rm :  \implies \: \boxed{  \rm \: H =  \dfrac{ {u}^{2} \sin {}^{2}  \alpha   }{2g} }

Formula of Horizontal Range

 \ :  \implies \:  \boxed{\rm \: R  =  \dfrac{ {u}^{2} \sin2 \alpha   }{g} }

Put the value of R and H in respective formula

Range

 \ :  \implies \:  {\rm \: 50  =  \dfrac{ {u}^{2} \sin2 \alpha   }{g} }

Heights

 \rm :  \implies \: {  \rm \: 10=  \dfrac{ {u}^{2} \sin {}^{2}  \alpha   }{2g} }

Divide Height with range , we get

  :  \implies \: \rm  \dfrac{10}{50}  =  \dfrac{ \dfrac{ {u}^{2} \sin {}^{2}  \alpha   }{2g} }{ \dfrac{ {u}^{2} \sin2 \alpha  }{g} }

Where

 \ :  \implies \:  \boxed{  \sin2 \alpha   = 2 \sin \alpha   \cos \alpha }

we get

 \rm \ \: :  \implies \dfrac{1}{5}  =  \dfrac{ {u}^{2} \sin {}^{2} \alpha   }{2g}  \times  \dfrac{g}{ {u}^{2}2 \sin\alpha  \cos \alpha   }

 \rm :  \implies \:  \dfrac{1}{5}  =  \dfrac{ \sin  \alpha  }{4 \cos \alpha  }

 \rm :  \implies \dfrac{4}{5}  =  \dfrac{ \sin \alpha }{ \cos \alpha  }

 \rm :  \implies \:  \tan  \alpha =   \dfrac{4}{5}

so angel of projectile is

  :  \implies \boxed{ \alpha  =  \tan {}^{ - 1}  \dfrac{4}{5} }

Similar questions