Physics, asked by sandeep555777, 9 months ago

A projectile is thrown in the upward direction making an angle of 60∘ with the horizontal direction with a velocity of 150ms−1. Then the time after which its inclination with the horizontal is 45∘ is

Answers

Answered by hipsterizedoll410
0

Answer: 9.31 s

Given:

\sf Angle\:of\:projection(\theta)=60^{\circ}

\sf Horizontal\:velocity(u)=150\ m/s

To find:

\sf Time(t)\:after\:which\:its\:inclination\:with\:horizontal\:is\:45^{\circ}.

Explanation:

\sf Let\:its\:final\:velocity=v\:at\:\phi=45^{\circ}.\:

\sf We\:know\:that,

\sf Horizontal\:component\:of\:velocity\:remains\:constant\:during\:the\:projectile.

\sf \therefore \boxed{\sf v\:cos\phi=u\:cos\theta}

\Rightarrow \sf v\:cos\:45^{\circ}=u\:cos\:60^{\circ}

\Rightarrow \sf v\times\dfrac{1}{\sqrt{2} } =u\times\dfrac{1}{2}

\Rightarrow \sf v\times\dfrac{1}{\sqrt{2} } =150\times\dfrac{1}{2}

\Rightarrow \boxed{\sf v = \dfrac{150}{\sqrt{2}}\:m/s}

\sf For\:vertical\:motion,\:we\:know\:that,

\boxed{\sf v\:sin\phi=u\:sin\theta-gt}

\Rightarrow \sf v\:sin\:45^{\circ}=u\:sin\:60^{\circ}-9.8t

\Rightarrow \sf v\times \dfrac{1}{\sqrt{2}} =v\times\dfrac{\sqrt{3} }{2} -9.8t

\Rightarrow \sf \dfrac{150}{\sqrt{2}}  \times \dfrac{1}{\sqrt{2}} =  {150}\times\dfrac{\sqrt{3} }{2} -9.8t

\Rightarrow \sf \dfrac{150}{{2}} =  {150}\times\dfrac{\sqrt{3} }{2} -9.8t

\Rightarrow \sf  9.8t=  \dfrac{150\sqrt{3} -150}{2}

\Rightarrow \sf  9.8t=  \dfrac{150}{2}(\sqrt{3}-1)

\Rightarrow \sf  9.8t=  125(1.73-1)

\Rightarrow \sf  9.8t=  91.25

\Rightarrow \boxed{\sf  t=  9.31\:s}

Hence, the time after which its inclination with the horizontal is 45° is 9.31 s.

Answered by Anonymous
8

At the two points of the trajectory during projectile motion, the horizontal component of the velocity is same. Then

150×12=v×12–√150×12=v×12 or v=1502–√ms−1v=1502ms-1

Initially : uy=usin60∘=1503–√2ms−1uy=usin60∘=15032ms-1

Finally : vy=vsin45∘=1502–√×12–√=1502ms−1vy=vsin45∘=1502×12=1502ms-1

But vy=uy+aytvy=uy+ayt or 1502=1503–√2−10t1502=15032-10t

10t=1502(

Similar questions