Physics, asked by sumanpreet46, 11 months ago

a projectile is thrown with the velocity of 20 metre per second at an angle of 60 degree with the horizontal calculate its time of flight horizontal range and maximum height ​

Answers

Answered by Shashank7073
0

Explanation:

taking g=10m/sec

then t=2u/g

therefore t=2×20/10

t=4 second.

Horizontal Range(R) =400×0.8/10

R=40×0.8

R=32 metre.

Maximum Height(H)= 400×0.6/2×10

H= 20×0.6

H=120 metre.

Hope u understood

Answered by harisreeps
0

Answer:

A projectile is thrown with the velocity of 20 metres per second at an angle of 60 degrees with the horizontal.

a)  Time of flight              =       3.5347 sec

b)  Horizontal range        =       23.6984 m

c)  Maximum height        =        15.3061 m

Explanation:

For a projectile motion,

  • Time of flight  :          \mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}  
  • Horizontal range :      \mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{g}}
  • Maximum height:       \mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}

where,

u - Initial velocity

θ - Angle of projection

g - Acceleration due to gravity

Given,

u    = 20 m/s

θ    =  60^{0}

g    = 9.8 m/s

The horizontal range is given by,

\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{g}}

   =\frac{\mathrm{20}^{2} \sin( 2 \times 60)}{\mathrm{9.8}}

R   =  23.6984 m

Time of flight can be calculated as follows,

\mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}

\mathrm{T}=\frac{2\times \mathrm{20} \times\sin 60}{\mathrm{9.8}}

( sin 60 = \frac{\sqrt{3} }{2} )

T =  3.5347 sec

The maximum height is,

\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}

   =\frac{\mathrm{20}^{2} \sin ^{2} \ 60}{2\times \mathrm{~9.8}}

H  = 15.3061 m

Similar questions