Math, asked by gulabshivmangal, 7 months ago

A
Prove that cosA/(1 + sin A)+(1 + sin A)/cosA= 2 sec A​

Answers

Answered by ItzArchimedes
12

_____________________

★ Sᴏʟᴜᴛɪᴏɴ :-

We need to prove,

[ cosA/(1 + sinA) ] + [ ( 1 + sinA )/cosA ] = 2 secA

Simplifying we have,

→ [ ( 1 + sinA )² + cos²A ] /( 1 + sinA ) cosA

→ [ 1² + sin²A + 2sinA + cos²A ] / cosA + sinAcosA

[°.° sin²A + cos²A = 1 ]

→ [ 1 + 1 + 2sinA ] / ( 1 + sinA )cosA

→ [ 2 + 2sinA ] / ( 1 + sinA )cosA

→ 2[ 1 + sinA ] / ( 1 + sinA )cosA

→ 2/cosA

It can be written as

→ 2 × [ 1/cosA ]

[°.° 1/cosA = secA ]

→ 2secA

Now , comparing with RHS

2secA = 2secA

LHS = RHS

Hence , proved !

______________________

Answered by Anonymous
10

 \huge \underline{ \underline{ \bf  \purple{Solution :}}}

 \longrightarrow  \: \sf\frac{ \cos}{1 +  \sin} +  \frac{1 +  \sin}{ \cos} \\  \\ \longrightarrow  \: \sf \frac{ { (\cos)}^{2} +  {(1 +  \sin)}^{2}  }{(1 +  \sin)( \cos)} \\  \\\longrightarrow  \: \sf \frac{ {\cos}^{2} +  {1 + 2 \sin +  \sin}^{2}  }{(1 +  \sin)( \cos)} \\  \\\longrightarrow  \: \sf \frac{ 1+ 1 +  2\sin}{(1 +  \sin)( \cos)} \\  \\ \longrightarrow  \: \sf\frac{ 2+  2\sin}{(1 +  \sin)( \cos)} \\  \\ \longrightarrow  \: \sf \frac{2  \:( \cancel{ 1 +  \sin})}{ ( \cancel{1 +  \sin})\cos} \\  \\\longrightarrow  \: \sf \frac{2}{ \cos} \\  \\ \longrightarrow  \: \sf2 \sec

 \LARGE \underline{ \underline{ \bf \orange {Hence \: Proved}}}

Similar questions