a) Prove that
sin(105°) = ( sqrt(6) + sqrt(2) ) / 4
Answers
Answered by
0
Step-by-step explanation:
Given:-
Sin 105°
To find:-
Prove that :-
Sin 105° = (√6+√2)/4
Solution:-
Given that
Sin 105°
It can be written as Sin (60°+45°)
It is in the form of Sin (A+B)
Where , A = 60° and B = 45°
We know that
Sin (A+B)= Sin A Cos B + Cos A Sin B
On Substituting these values of A and B in the above formula,then
=> Sin (60°+45°)
=> Sin 60° Cos 45° + Cos 60°° Sin 45°
=> (√3/2) × (1/√2) + (1/2) × (1/√2)
=> (√3×1)/(2×√2) + (1×1)/(2×√2)
=> (√3/2√2 )+(1/2√2)
=>(√3+1)/2√2
On multiplying both numerator and the denominator with √2 then
=> [√2](√3+1)/(2√2×√2)
=>[ (√2×√3)+(√2×1)] / (2×√2×√2)
=> (√6 + √2) / (2×2)
=> (√6 + √2)/4
Sin 105° = (√6 + √2) / 4
Hence, Proved.
Used formula:-
- Sin (A+B)= Sin A Cos B + Cos A Sin B
Similar questions
History,
1 month ago
Science,
3 months ago
Computer Science,
3 months ago
Social Sciences,
10 months ago
Math,
10 months ago
CBSE BOARD X,
10 months ago