Math, asked by maheshparashar1280, 5 months ago

a quadractic equation ax² +bx² +c = 0 will have no roots if .(a) b² -4ac > 0 (b) b² - 4ac≥ 0 (c) b² -4ac <0 (d) b² - 4a =0​

Answers

Answered by yashsingh8704
1

Answer:

Step-by-step explanation:

Case I: b2 - 4ac > 0

When a, b and c are real numbers, a ≠ 0 and discriminant is positive (i.e., b2 - 4ac > 0), then the roots α and β of the quadratic equation ax2 + bx + c = 0 are real and unequal.

 

Case II: b2 - 4ac = 0

When a, b and c are real numbers, a ≠ 0 and discriminant is zero (i.e., b2 - 4ac = 0), then the roots α and β of the quadratic equation ax2 + bx + c = 0 are real and equal.

 

Case III: b2 - 4ac < 0

When a, b and c are real numbers, a ≠ 0 and discriminant is negative (i.e., b2 - 4ac < 0), then the roots α and β of the quadratic equation ax2 + bx + c = 0 are unequal and imaginary. Here the roots α and β are a pair of the complex conjugates.

 

Case IV: b2 - 4ac > 0 and perfect square

When a, b and c are real numbers, a ≠ 0 and discriminant is positive and perfect square, then the roots α and β of the quadratic equation ax2 + bx + c = 0 are real, rational unequal.

 

Case V: b2 - 4ac > 0 and not perfect square

When a, b and c are real numbers, a ≠ 0 and discriminant is positive but not a perfect square then the roots of the quadratic equation ax2 + bx + c = 0 are real, irrational and unequal.

Here the roots α and β form a pair of irrational conjugates.

 

Case VI: b2 - 4ac is perfect square and a or b is irrational

When a, b and c are real numbers, a ≠ 0 and the discriminant is a perfect square but any one of a or b is irrational then the roots of the quadratic equation ax2 + bx + c = 0 are irrational.

 

Similar questions