Math, asked by anchal67, 11 months ago

a quadrilateral ABCD is draw circumscribe a circle . prove that ab+ cd = ad + bc​

Answers

Answered by Blaezii
13

Chapter # 10.

Class - 10.

Circles.

Answer :

Proved!

Step-by-step explanation :

Given that :

ABCD be the quadrilateral circumscribe a circle with O.

The quadrilateral touches the circle at points P, Q, R & S.

To Prove :

AB + CD = AD + BC.

Solution :

We know that :

\bigstar\;\textbf{\underline{\underline{Lengths of the tagnets drawn from external point are Equal.}}}

So,

\sf \\ \\\implies AP = AS......Eq(1)\\ \\\implies BP = BQ.......Eq(2)\\ \\\implies CR = CQ.......Eq(3)\\ \\\implies DR = DS..........Eq(4)

\star\;\textbf{\underline{\underline{Addition of all Equations,}}}\\ \\\sf \\ \\\implies AP + BP+CR+DR = AS =BQ+CQ=DS\\ \\\implies (AP+BP) + (CR+DR)=(AS+SD) +(BQ+CQ)\\ \\\implies AB+CD = AD + BC\\ \\\bigstar\;\textbf{\underline{\underline{Hence, Proved!}}}\\ \\ \\\star\;\textbf{\underline{\underline{Refer to the Attachment for the figure.}}}

Attachments:
Answered by ironhemanth
0

Answer:

Step-by-step explanation:

  • as=ap
  • pb=bq
  • cq=cr
  • dr=ds
  • tangents drawn from same point
  • hence,
  •     ap+pb+dr+rc=as+sd+cq+cq
  • ab+cd=ad+cd
  • hence proved→→
Similar questions