Physics, asked by Anonymous, 5 months ago

A racing track of curvatures 9.9 m is banked at tan-¹ 0.5 coefficients of statis friction between the track and tyres of vehicle is 0.2. Determine the speed limit with 10 % margin.​

Answers

Answered by Ekaro
30

Given :

Radius of circular path = 9.9m

Angle of banking = tan‾¹ 0.5

Coefficient of friction = 0.2

To Find :

Speed limit with 10% margin.

Solution :

❒ Banking of tracks (roads) : The maximum velocity with which a vehicle (in absence of friction) can negotiate a circular road of radius r and banked at an angle θ is given by

\dag\:\underline{\boxed{\bf{\red{v=\sqrt{rg\tan\theta}}}}}

When the frictional forces are also taken into account,

A] The maximum safe velocity :-

\bigstar\:\underline{\boxed{\bf{v_{max}=\sqrt{rg\bigg(\dfrac{\mu+\tan\theta}{1-\mu\tan\theta}\bigg)}}}}

B] The minimum safe velocity :-

\bigstar\:\underline{\boxed{\bf{v_{min}=\sqrt{rg\bigg(\dfrac{\tan\theta-\mu}{1+\mu\tan\theta}\bigg)}}}}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\put(0,0){\line(1,0){10}}\put(0,0){\vector(-1,0){0}}\put(10,0){\vector(1,0){0}}\put(1,0){\circle*{0.2}}\put(9,0){\circle*{0.2}}\put(2.5,0){\circle*{0.2}}\put(7.5,0){\circle*{0.2}}\put(1,0.5){$\sf +10\%$}\put(7.6,0.5){$\sf -10\%$}\put(0.7,-0.5){$\bf v_{min}$}\put(2.2,-0.5){$\bf v'_{min}$}\put(7.2,-0.5){$\bf v'_{max}$}\put(8.6,-0.5){$\bf v_{max}$}\end{picture}

Maximum safe velocity :-

\sf:\implies\:v_{max}=\sqrt{rg\bigg(\dfrac{\mu+\tan\theta}{1-\mu\tan\theta}\bigg)}

\sf:\implies\:v_{max}=\sqrt{(9.9)(10)\bigg(\dfrac{0.2+0.5}{1-(0.2)(0.5)}\bigg)}

\sf:\implies\:v_{max}=\sqrt{99\bigg(\dfrac{0.7}{1-0.1}\bigg)}

\sf:\implies\:v_{max}=\sqrt{99\bigg(\dfrac{0.7}{0.9}\bigg)}

\sf:\implies\:v_{max}=\sqrt{99\times 0.77}

\sf:\implies\:v_{max}=\sqrt{77}

\sf:\implies\:v_{max}=8.775\:ms^{-1}

We are asked to find \sf{v'_{max}}.

\sf:\implies\:v'_{max}=v_{max}-10\%\:of\:v_{max}

\sf:\implies\:v'_{max}=8.775-\dfrac{10}{100}(8.775)

\sf:\implies\:v'_{max}=8.775-(0.1)(8.775)

\sf:\implies\:v'_{max}=8.775-0.8775

\bf:\implies\:v'_{max}=7.897\:ms^{-1}

Minimum safe velocity :-

\sf:\implies\:v_{min}=\sqrt{rg\bigg(\dfrac{\tan\theta-\mu}{1+\mu\tan\theta}\bigg)}

\sf:\implies\:v_{min}=\sqrt{(9.9)(10)\bigg(\dfrac{0.5-0.2}{1+(0.2)(0.5)}\bigg)}

\sf:\implies\:v_{min}=\sqrt{99\bigg(\dfrac{0.3}{1+0.1}\bigg)}

\sf:\implies\:v_{min}=\sqrt{99\bigg(\dfrac{0.3}{1.1}\bigg)}

\sf:\implies\:v_{min}=\sqrt{99\times 0.27}

\sf:\implies\:v_{min}=\sqrt{27}

\sf:\implies\:v_{min}=5.196\:ms^{-1}

We are asked to find \sf{v'_{min}}.

\sf:\implies\:v'_{min}=v_{min}+10\%\:of\:v_{min}

\sf:\implies\:v'_{min}=5.196+\dfrac{10}{100}(5.196)

\sf:\implies\:v'_{min}=5.196+(0.1)(5.196)

\sf:\implies\:v'_{min}=5.196+0.5196

\bf:\implies\:v'_{min}=5.716\:ms^{-1}

Speed limit with 10% margin :-

\dag\:\underline{\boxed{\bf{\gray{v'_{min}-v'_{max}=5.716-7.897}}}}

Answered by mrgoodb62
0

Answer:

❖❖I hope it's helpful for you dear

_____________________

★★Be brainly

__________________

Attachments:
Similar questions