A ray of light passing through the point (1, 2) is reflected on the x-axis at a point p and passes through the point (5, 3). The abscissa of the point p is:
Answers
Answered by
2
heyaa!!
here is your answer..
Let the coordinates of the point A be ( a,0) .
Let AL be the perpendicular to xx - axis.
By Law of reflection we know,
angle of incidence = angle of reflection.
Hence <BAL=<CAL=ϕ<BAL=<CAL=ϕ
Let <CAX=θ<CAX=θ
<OAB=180∘−(θ+2ϕ)<OAB=180∘−(θ+2ϕ)
=180∘−[θ+2(90∘−θ)=180∘−[θ+2(90∘−θ)
(∵ϕ=90−θ)(∵ϕ=90−θ)
∴<OAB=180∘−θ−180∘+2θ∴<OAB=180∘−θ−180∘+2θ
=θ⇒<BAX=180∘−θ=θ⇒<BAX=180∘−θ
Slope of the line AC,m=3−05−aAC,m=3−05−a
also m=tanθm=tanθ
⇒tanθ=35−a⇒tanθ=35−a-------(1)
Slope of the line AB=2−01−aAB=2−01−a
∴tan(180∘−θ)=21−a∴tan(180∘−θ)=21−a
But tan(180∘−θ)=−tanθtan(180∘−θ)=−tanθ
∴−tanθ=21−a∴−tanθ=21−a
∴tanθ=2a−1∴tanθ=2a−1------(2)
equally (1) and (2) we get,
35−a35−a=2a−1=2a−1
⇒3(a−1)=2(5−a)⇒3(a−1)=2(5−a)
3a−3=10−2a3a−3=10−2a
⇒5a=13⇒5a=13
∴a=135∴a=135
Hence the coordinate of A are (135(135,0)
instead of A u can write P...
hope it helps..
here is your answer..
Let the coordinates of the point A be ( a,0) .
Let AL be the perpendicular to xx - axis.
By Law of reflection we know,
angle of incidence = angle of reflection.
Hence <BAL=<CAL=ϕ<BAL=<CAL=ϕ
Let <CAX=θ<CAX=θ
<OAB=180∘−(θ+2ϕ)<OAB=180∘−(θ+2ϕ)
=180∘−[θ+2(90∘−θ)=180∘−[θ+2(90∘−θ)
(∵ϕ=90−θ)(∵ϕ=90−θ)
∴<OAB=180∘−θ−180∘+2θ∴<OAB=180∘−θ−180∘+2θ
=θ⇒<BAX=180∘−θ=θ⇒<BAX=180∘−θ
Slope of the line AC,m=3−05−aAC,m=3−05−a
also m=tanθm=tanθ
⇒tanθ=35−a⇒tanθ=35−a-------(1)
Slope of the line AB=2−01−aAB=2−01−a
∴tan(180∘−θ)=21−a∴tan(180∘−θ)=21−a
But tan(180∘−θ)=−tanθtan(180∘−θ)=−tanθ
∴−tanθ=21−a∴−tanθ=21−a
∴tanθ=2a−1∴tanθ=2a−1------(2)
equally (1) and (2) we get,
35−a35−a=2a−1=2a−1
⇒3(a−1)=2(5−a)⇒3(a−1)=2(5−a)
3a−3=10−2a3a−3=10−2a
⇒5a=13⇒5a=13
∴a=135∴a=135
Hence the coordinate of A are (135(135,0)
instead of A u can write P...
hope it helps..
Similar questions